44 research outputs found

    The role of insulin receptor substrate 2 in hypothalamic and β cell function

    Get PDF
    Insulin receptor substrate 2 (Irs2) plays complex roles in energy homeostasis. We generated mice lacking Irs2 in β cells and a population of hypothalamic neurons (RIPCreIrs2KO), in all neurons (NesCreIrs2KO), and in proopiomelanocortin neurons (POMCCreIrs2KO) to determine the role of Irs2 in the CNS and β cell. RIPCreIrs2KO mice displayed impaired glucose tolerance and reduced β cell mass. Overt diabetes did not ensue, because β cells escaping Cre-mediated recombination progressively populated islets. RIPCreIrs2KO and NesCreIrs2KO mice displayed hyperphagia, obesity, and increased body length, which suggests altered melanocortin action. POMCCreIrs2KO mice did not display this phenotype. RIPCreIrs2KO and NesCreIrs2KO mice retained leptin sensitivity, which suggests that CNS Irs2 pathways are not required for leptin action. NesCreIrs2KO and POMCCreIrs2KO mice did not display reduced β cell mass, but NesCreIrs2KO mice displayed mild abnormalities of glucose homeostasis. RIPCre neurons did not express POMC or neuropeptide Y. Insulin and a melanocortin agonist depolarized RIPCre neurons, whereas leptin was ineffective. Insulin hyperpolarized and leptin depolarized POMC neurons. Our findings demonstrate a critical role for IRS2 in β cell and hypothalamic function and provide insights into the role of RIPCre neurons, a distinct hypothalamic neuronal population, in growth and energy homeostasis

    Prediction of pH Change in Processed Acidified Turnips

    Get PDF
    The acetic acid uptake by turnips was studied during an acidification process in containers. The process was successfully described by a Fickian diffusion, using a correlation for the buffer effect. Diffusion coefficients (0.629 to 3.99 × 10-9 m2/sec) and partition coefficients (0.8 to 1.1) were obtained by optimization of the fit between experimental and theoretical values, using the simplex method. The partition coefficient did not show an evident dependence on temperature, while diffusivity followed an Arrhenius type behavior. The relationship between acid concentration and pH was described using a cubic model with parameters independent of temperature. Results showed that the combination of these models describing the acid diffusion into the food and the buffering effects of the food allowed accurate prediction of pH evolution in the acidification process

    Oxidative stress and life histories: unresolved issues and current needs

    Get PDF
    Life-history theory concerns the trade-offs that mold the patterns of investment by animals between reproduction, growth, and survival. It is widely recognized that physiology plays a role in the mediation of life-history trade-offs, but the details remain obscure. As life-history theory concerns aspects of investment in the soma that influence survival, understanding the physiological basis of life histories is related, but not identical, to understanding the process of aging. One idea from the field of aging that has gained considerable traction in the area of life histories is that life-history trade-offs may be mediated by free radical production and oxidative stress. We outline here developments in this field and summarize a number of important unresolved issues that may guide future research efforts. The issues are as follows. First, different tissues and macromolecular targets of oxidative stress respond differently during reproduction. The functional significance of these changes, however, remains uncertain. Consequently there is a need for studies that link oxidative stress measurements to functional outcomes, such as survival. Second, measurements of oxidative stress are often highly invasive or terminal. Terminal studies of oxidative stress in wild animals, where detailed life-history information is available, cannot generally be performed without compromising the aims of the studies that generated the life-history data. There is a need therefore for novel non-invasive measurements of multi-tissue oxidative stress. Third, laboratory studies provide unrivaled opportunities for experimental manipulation but may fail to expose the physiology underpinning life-history effects, because of the benign laboratory environment. Fourth, the idea that oxidative stress might underlie life-history trade-offs does not make specific enough predictions that are amenable to testing. Moreover, there is a paucity of good alternative theoretical models on which contrasting predictions might be based. Fifth, there is an enormous diversity of life-history variation to test the idea that oxidative stress may be a key mediator. So far we have only scratched the surface. Broadening the scope may reveal new strategies linked to the processes of oxidative damage and repair. Finally, understanding the trade-offs in life histories and understanding the process of aging are related but not identical questions. Scientists inhabiting these two spheres of activity seldom collide, yet they have much to learn from each other

    Oxidative damage, ageing, and life-history evolution: where now?

    Get PDF
    The idea that resources are limited and animals can maximise fitness by trading costly activities off against one another forms the basis of life-history theory. Although investment in reproduction or growth negatively affects survival, the mechanisms underlying such trade-offs remain obscure. One plausible mechanism is oxidative damage to proteins, lipids, and nucleic acids caused by reactive oxygen species (ROS). Here, we critically evaluate the premise that ROS-induced oxidative damage shapes life history, focussing on birds and mammals, and highlight the importance of ecological studies examining free-living animals within this experimental framework. We conclude by emphasising the value of using multiple assays to determine oxidative protection and damage. We also highlight the importance of using standardised and appropriate protocols, and discuss future research directions

    Freezing influences diffusion of reducing sugars in carrot cortex

    No full text
    The loss of reducing sugars from raw and previously frozen carrot cortex tissue immersed in warm water was studied as a function of temperature (40–100°C). Leaching was described as a diffusional mechanism by application of Fick's 2nd law. This approach successfully modeled losses from raw carrots at temperatures higher than 60°C. At low temperatures diffusion was much slower, due to a high resistence of the tissues to mass transfer, and Fick's 2nd law could not be applied. Previously frozen carrots showed a Fickian behaviour through the range of temperatures and diffusivities were much higher. Dependence of diffusivity on temperature followed an Arrhenius type equation for the two cases. However, the activation energy of pre-frozen carrots was lower, indicating loss of sensitivity to temperature variations.info:eu-repo/semantics/acceptedVersio
    corecore