410 research outputs found

    A Derivation of Three-Dimensional Inertial Transformations

    Get PDF
    The derivation of the transformations between inertial frames made by Mansouri and Sexl is generalised to three dimensions for an arbitrary direction of the velocity. Assuming lenght contraction and time dilation to have their relativistic values, a set of transformations kinematically equivalent to special relativity is obtained. The ``clock hypothesis'' allows the derivation to be extended to accelerated systems. A theory of inertial transformations maintaining an absolute simultaneity is shown to be the only one logically consistent with accelerated movements. Algebraic properties of these transformations are discussed. Keywords: special relativity, synchronization, one-way velocity of light, ether, clock hypothesis.Comment: 16 pages (A5), Latex, one figure, to be published in Found. Phys. Lett. (1997

    Molecular mechanisms of mtdna-mediated inflammation

    Get PDF
    Besides their role in cell metabolism, mitochondria display many other functions. Mitochondrial DNA (mtDNA), the own genome of the organelle, plays an important role in modulating the inflammatory immune response. When released from the mitochondrion to the cytosol, mtDNA is recognized by cGAS, a cGAMP which activates a pathway leading to enhanced expression of type I interferons, and by NLRP3 inflammasome, which promotes the activation of pro-inflammatory cytokines Interleukin-1beta and Interleukin-18. Furthermore, mtDNA can be bound by Toll-like receptor 9 in the endosome and activate a pathway that ultimately leads to the expression of pro-inflammatory cytokines. mtDNA is released in the extracellular space in different forms (free DNA, protein-bound DNA fragments) either as free circulating molecules or encapsulated in extracellular vesicles. In this review, we discussed the latest findings concerning the molecular mechanisms that regulate the release of mtDNA from mitochondria, and the mechanisms that connect mtDNA misplacement to the activation of inflammation in different pathophysiological conditions

    Mitochondrial DNA and exercise: Implications for health and injuries in sports

    Get PDF
    Recently, several studies have highlighted the tight connection between mitochondria and physical activity. Mitochondrial functions are important in high-demanding metabolic activities, such as endurance sports. Moreover, regular training positively affects metabolic health by increasing mitochondrial oxidative capacity and regulating glucose metabolism. Exercise could have multiple effects, also on the mitochondrial DNA (mtDNA) and vice versa; some studies have investigated how mtDNA polymorphisms can affect the performance of general athletes and mtDNA haplogroups seem to be related to the performance of elite endurance athletes. Along with several stimuli, including pathogens, stress, trauma, and reactive oxygen species, acute and intense exercise also seem to be responsible for mtDNA release into the cytoplasm and extracellular space, leading to the activation of the innate immune response. In addition, several sports are characterized by a higher frequency of injuries, including cranial trauma, associated with neurological consequences. However, with regular exercise, circulating cell-free mtDNA levels are kept low, perhaps promoting cf-mtDNA removal, acting as a protective factor against inflammation

    Characterization of a bean landrace from Sicily: the ‘fagiolo Badda di Polizzi'

    Get PDF
    Inside the project “Piano per la Produzione di Proteine Vegetali in Sicilia” investigations were carried out to characterize a bean population cultivated in the Parco delle Madonie area, the ‘Fagiolo Badda di Polizzi’. The producers’ interest for this landrace and the appreciation of the consumers could justify the start up of a valorization program through a product certification. Researches on the morpho-physiological aspects and on the nutritional profile were made in trials conducted between 2005 and 2007. All the Badda bean accessions showed an indeterminate plant growth habit, white flowers and a very delayed flowering time. In particular, a certain variability was seen and described for the size and shape of pods and seeds. Two types of Badda are cultivated, differentiated by the secondary seed colour: the “white Badda” and the “black Badda”. Both have ivory has a primary seed coat colour, but the “white Badda” has a brownish spot on the hilum, whereas the “black Badda” shows a black spot. In addition, the secondary colour of the seed coat of the “black Badda” showed two different pigmentations: violet and black, that suggested a genetic differentiation into different sub-populations. Finally, the “black Badda” resulted less susceptible to viral infections than the “white” one. At the molecular level, three accessions of Badda bean (two ‘white’ and one ‘black’) have been compared with control varieties, including one accessions of ‘Fagiolo del Purgatorio’ from Gradoli (VT), seven landraces of the Borlotto type collected in the Marche region and the cultivars Bat, Jalo, Clio and Big Borlotto. The analyses were carried out using 12 Inter Simple Sequence Repeats (ISSR) primers yielding a total of 140 bands. Although no specific band for the Badda landrace were detected, two amplicons were found only in the accessions of Badda and in Monachello, a bicol-seeded type from the Marche region, morphologically similar to the “black Badda”. The dendrogram obtained from the genetic distances based on ISSRs indicated that the Badda type belongs to the Andean gene pool and that it is distinguishable from the tested controls being grouped into a separate cluster. Within the Badda type, the ‘white’ accessions were not separated from the ‘black’ one

    The Impact of Stress and Social Determinants on Diet in Cardiovascular Prevention in Young Women

    Get PDF
    The prevention of cardiovascular diseases is a fundamental pillar for reducing morbidity and mortality caused by non-communicable diseases. Social determinants, such as socioeconomic status, education, neighborhood, physical environment, employment, social support networks, and access to health care, play a crucial role in influencing health outcomes and health inequities within populations. Social determinants and stress in women are interconnected factors that can significantly impact women's health and well-being. Pregnancy is a good time to engage young women and introduce them to beneficial behaviors, such as adopting essential life skills, especially diet, and learning stress management techniques. Stress influences diet, and women are more likely to engage in unhealthy eating behaviors such as emotional eating or coping with stress with food. Strong action is needed to improve women's lifestyle starting at a young age considering that this lays the foundation for a lower cardiovascular risk in adults and the elderly. The objective of this review is to examine cardiovascular primary prevention in young healthy women, focusing particularly on unresolved issues and the influence of social determinants, as well as the correlation with stressors and their influence on diet

    A Pbx1-dependent genetic and transcriptional network regulates spleen ontogeny

    Get PDF
    The genetic control of cell fate specification, morphogenesis and expansion of the spleen, a crucial lymphoid organ, is poorly understood. Recent studies of mutant mice implicate various transcription factors in spleen development, but the hierarchical relationships between these factors have not been explored. In this report, we establish a genetic network that regulates spleen ontogeny, by analyzing asplenic mice mutant for the transcription factors Pbx1, Hox11 (Tlx1), Nkx3.2 (Bapx1) and Pod1 (capsulin, Tcf21). We show that Hox11 and Nkx2.5, among the earliest known markers for splenic progenitor cells, are absent in the splenic anlage of Pbx1 homozygous mutant (-/-) embryos, implicating the TALE homeoprotein Pbx1 in splenic cell specification. Pbx1 and Hox11 genetically interact in spleen formation and loss of either is associated with a similar reduction of progenitor cell proliferation and failed expansion of the splenic anlage. Chromatin immunoprecipitation assays show that Pbx1 binds to the Hox11 promoter in spleen mesenchymal cells, which co-express Pbx1 and Hox11. Furthermore, Hox11 binds its own promoter in vivo and acts synergistically with TALE proteins to activate transcription, supporting its role in an auto-regulatory circuit. These studies establish a Pbx1-Hox11-dependent genetic and transcriptional pathway in spleen ontogeny. Additionally, we demonstrate that while Nkx3.2 and Pod1 control spleen development via separate pathways, Pbx1 genetically regulates key players in both pathways, and thus emerges as a central hierarchical co-regulator in spleen genesis

    Bionics-based surgical training using 3D printed photopolymers and smart devices

    Get PDF
    Additive manufacturing technologies support the realization of surgical training devices using, typically, photopolymers-based materials. Unfortunately, the material jetting family, able to print a large range of soft and hard polymers, requires expensive machines and materials, which are not always available. On the other hand, vat polymerization fails in the resolution/volume ratio and in the mechanical properties reconstruction. Stereolithographic 3D printers, mostly used in dental surgery, make possible to realize cheap and sustainable models for training activity using only one material, reducing the possibility to obtain different mechanical characteristics. Moreover, the printed objects have to be treated (i.e. curing post-processing) in order to obtain the required performances, that could be preserved for long term storing. The aim of the proposed approach is to assure the surgeons' skills improvement through bionic-based surgical 3D printed models and smart devices, able to reproduce the same perception of a real surgical activity. We demonstrated how it is possible develop smart devices capable to take into account the same characteristics of different materials (i.e. bone and spongy bone) even if stored for a long time

    Cardiovascular Effects of Whole-Body Cryotherapy in Non-professional Athletes

    Get PDF
    Objectives: The study aimed to investigate changes in heart rate, blood pressure, respiratory rate, oxygen saturation, and body temperature in non-professional trained runners during whole body cryotherapy (WBC). Methods: Ten middle-distance runners received 3 once-a-day sessions of WBC. Subjects underwent BP measurements and ECG recorded before and immediately after the daily WBC session. During WBC we recorded a single lead trace (D1) for heart rhythm control. In addition, the 5 vital signs Blood pressure, heart rate, respiratory rate, oxygen saturation, and body temperature were monitored before, during, and after all WBC session. Results: We did not report significant changes in ECG main intervals (PR, QT, and QTc). Mean heart rate changed from 50.98 ± 4.43 bpm (before) to 56.83 ± 4.26 bpm after WBC session (p < 0.05). The mean systolic blood pressure did not change significantly during and after WBC [b baseline: 118 ± 5 mmHg, changed to 120 ± 3 mmHg during WBC, and to 121 ± 2 mmHg after session (p < 0.05 vs. baseline)]. Mean respiratory rate did not change during WBC as well as oxygen saturations (98 vs. 99%). Body temperature was slightly increased after WBC, however it remains within physiological values Conclusion: In non-professional athletes WBC did not affect cardiovascular response and can be safely used. However, further studies are required to confirm these promising results of safety in elderly non-athlete subjects

    Locality hypothesis and the speed of light

    Get PDF
    The locality hypothesis is generally considered necessary for the study of the kinematics of non-inertial systems in special relativity. In this paper we discuss this hypothesis, showing the necessity of an improvement, in order to get a more clear understanding of the various concepts involved, like coordinate velocity and standard velocity of light. Concrete examples are shown, where these concepts are discussed.Comment: 23 page

    Molecular Pathogenesis of Myelodysplastic Syndromes

    Get PDF
    Myelodysplastic syndromes (MDS) are a group of clonal hematologic disorders characterized by inefficient hematopoiesis, hypercellular bone marrow, dysplasia of blood cells and cytopenias. Most patients are diagnosed in their late 60s to early 70s. MDS is a risk factor for the development of acute myeloid leukemia which can occur in 10-15% of patients with MDS. A variety of pathophysiologic mechanisms contributes to the genesis and persistence of MDS including immunologic, epigenetic, cytogenetic and genetic factors. The only potential curative option for MDS is hematopoietic cell transplantation which is suitable for only a few patients. Currently approved therapeutic options for MDS, including lenalidomide, decitabine, and 5-azacytidine, are targeted to improve transfusion requirements and quality of life. Moreover, 5-azacytidine has also been demonstrated to improve survival in some patients with higher risk MDS. New ways to predict which patients will better gain benefit from currently available therapeutic agents are the primary challenges in MDS. In the last 10 years, chromosome scanning and high throughput technologies (single nucleotide polymorphism array genotyping, comparative genomic hybridization, and whole genome/ exome sequencing) have tremendously increased our knowledge of MDS pathogenesis. Indeed, the molecular heterogeneity of MDS supports the idea of different therapeutic approaches which will take into account the diverse morphologic and clinical presentations of MDS patients rather than a restricted therapeutic strategy. This review will summarize the molecular abnormalities in key relevant components of the biology and pathogenesis of MDS and will provide an update on the clinical impact and therapeutic response in MDS patients
    corecore