13 research outputs found

    Production of functionalised chitins assisted by fungal lytic polysaccharide monooxygenase

    No full text
    Published on 06 April 2018.The gene CCT67099 from Fusarium fujikuroi was shown to encode a novel enzyme from the Lytic Polysaccharide Monooxygenase (LPMO) Family AA11. The gene was expressed and a truncated version of the enzyme, designated as FfAA11, was purified from the periplasmic space of Escherichia coli cells at high yield. FfAA11 exhibited oxidative activity against α- and β-chitins, as well as lobster shells. Under optimised conditions, FfAA11 introduced 35 nmol of carboxylate (COO−) moieties per milligram of α-chitin. These carboxylate groups were introduced onto the chitin surface under mild enzymatic oxidation conditions in an aqueous solution without changes to the crystallinity of the chitin fibres. FfAA11 was also combined with a simple and environmentally friendly chemical method that transforms recalcitrant chitins into desirable functionalised (nano)materials. The use of ethyl(hydroxyimino)cyanoacetate (Oxyma)-assisted click chemistry allowed the rapid modification of the surface of FfAA11-oxidized chitins, with a fluorescent probe, a peptide, and gold nanoparticles. The chemical steps performed, including the FfAA11 oxidase treatment and surface chemical modification, were achieved without the production of any toxic by-products or waste organic solvents. This approach represents a novel method for the greener production of chitin-based biomaterials.Damao Wang, Jing Li, Germán Salazar-Alvarez, Lauren S. McKee, Vaibhav Srivastava, Jonas A. Sellberg, Vincent Bulone and Yves S. Y. Hsie

    Reabsorption of Soft X Ray Emission at High X Ray Free Electron Laser Fluences

    No full text
    We report on oxygen K edge soft x ray emission spectroscopy from a liquid water jet at the Linac Coherent Light Source. We observe significant changes in the spectral content when tuning over a wide range of incident x ray fluences. In addition the total emission yield decreases at high fluences. These modifications result from reabsorption of x ray emission by valence excited molecules generated by the Auger cascade. Our observations have major implications for future x ray emission studies at intense x ray sources. We highlight the importance of the x ray pulse length with respect to the core hole lifetim

    Chemical Bond Activation Observed with an X ray Laser

    No full text
    The concept of bonding and antibonding orbitals is fundamental in chemistry. The population of those orbitals and the energetic difference between the two reflect the strength of the bonding interaction. Weakening the bond is expected to reduce this energetic splitting, but the transient character of bond-activation has so far prohibited direct experimental access. Here we apply time-resolved soft X-ray spectroscopy at a free-electron laser to directly observe the decreased bonding–antibonding splitting following bond-activation using an ultrashort optical laser pulse

    Probing the transition state region in catalytic CO oxidation on Ru

    Get PDF
    Femtosecond x-ray laser pulses are used to probe the carbon monoxide (CO) oxidation reaction on ruthenium (Ru) initiated by an optical laser pulse. On a time scale of a few hundred femtoseconds, the optical laser pulse excites motions of CO and oxygen (O) on the surface, allowing the reactants to collide, and, with a transient close to a picosecond (ps), new electronic states appear in the O K-edge x-ray absorption spectrum. Density functional theory calculations indicate that these result from changes in the adsorption site and bond formation between CO and O with a distribution of OC–O bond lengths close to the transition state (TS). After 1 ps, 10% of the CO populate the TS region, which is consistent with predictions based on a quantum oscillator model

    Megahertz single-particle imaging at the European XFEL

    No full text
    The emergence of high repetition-rate X-ray free-electron lasers (XFELs) powered by superconducting accelerator technology enables the measurement of significantly more experimental data per day than was previously possible. The European XFEL is expected to provide 27,000 pulses per second, over two orders of magnitude more than any other XFEL. The increased pulse rate is a key enabling factor for single-particle X-ray diffractive imaging, which relies on averaging the weak diffraction signal from single biological particles. Taking full advantage of this new capability requires that all experimental steps, from sample preparation and delivery to the acquisition of diffraction patterns, are compatible with the increased pulse repetition rate. Here, we show that single-particle imaging can be performed using X-ray pulses at megahertz repetition rates. The results obtained pave the way towards exploiting high repetition-rate X-ray free-electron lasers for single-particle imaging at their full repetition rate.11Ysciescopu

    Quantum effects in dynamics of water and other liquids of light molecules

    No full text
    Nuclear quantum effects in atomic motions are well known at low temperatures T50100T 50-100 K. Recent studies, however, suggested that nuclear quantum effects in systems of light molecules (e.g., water) might play an important role in structural dynamics and provide non-negligible contributions at such temperatures, and even up to ambient temperature. In this article, we discuss experimental evidences of the quantum effects in glass transition in liquids of light molecules and possible theoretical descriptions of these effects. We show that quantum effects may qualitatively change the temperature behavior of the structural relaxation time in supercooled liquids leading to deviations of some well-established properties of the glass transition when it happens at low temperatures. We also demonstrate that unusual behavior of water dynamics at low temperatures, including apparent fragile-to-strong crossover, can be ascribed to nuclear quantum effects
    corecore