43 research outputs found

    Optimal dataset combining in f_nl constraints from large scale structure in an idealised case

    Full text link
    We consider the problem of optimal weighting of tracers of structure for the purpose of constraining the non-Gaussianity parameter f_NL. We work within the Fisher matrix formalism expanded around fiducial model with f_NL=0 and make several simplifying assumptions. By slicing a general sample into infinitely many samples with different biases, we derive the analytic expression for the relevant Fisher matrix element. We next consider weighting schemes that construct two effective samples from a single sample of tracers with a continuously varying bias. We show that a particularly simple ansatz for weighting functions can recover all information about f_NL in the initial sample that is recoverable using a given bias observable and that simple division into two equal samples is considerably suboptimal when sampling of modes is good, but only marginally suboptimal in the limit where Poisson errors dominate.Comment: 6 pages, 5 figures; v2: comment on weighting for PS determination, fixed a couple of typos; v3: revised, matches version accepted by JCA

    Standard and non-standard primordial neutrinos

    Get PDF
    The standard cosmological model predicts the existence of a cosmic neutrino background with a present density of about 110 cm^{-3} per flavour, which affects big-bang nucleosynthesis, cosmic microwave background anisotropies, and the evolution of large scale structures. We report on a precision calculation of the cosmic neutrino background properties including the modification introduced by neutrino oscillations. The role of a possible neutrino-antineutrino asymmetry and the impact of non-standard neutrino-electron interactions on the relic neutrinos are also briefly discussed.Comment: 4 pages, no figures. Contribution to the proceedings of SNOW 2006, Stockholm, May 2-6, 2006. Typos corrected, updated reference

    The Cosmic Neutrino Background and the Age of the Universe

    Full text link
    We discuss the cosmological degeneracy between the age of the Universe, the Hubble parameter and the effective number of relativistic particles N_eff. We show that independent determinations of the Hubble parameter H(z) as those recently provided by Simon,Verde, Jimenez (2006), combined with other cosmological data sets can provide the most stringent constraint on N_eff, yielding N_eff=3.7 (-1.2) (+1.1) at 95% confidence level. A neutrino background is detected with high significance: N_eff >1.8 at better than 99% confidence level. Constraints on the age of the universe in the framework of an extra background of relativistic particles are improved by a factor 3.Comment: JCAP, in pres

    The Price of WMAP Inflation in Supergravity

    Get PDF
    The three-year data from WMAP are in stunning agreement with the simplest possible quadratic potential for chaotic inflation, as well as with new or symmetry-breaking inflation. We investigate the possibilities for incorporating these potentials within supergravity, particularly of the no-scale type that is motivated by string theory. Models with inflation driven by the matter sector may be constructed in no-scale supergravity, if the moduli are assumed to be stabilised by some higher-scale dynamics and at the expense of some fine-tuning. We discuss specific scenarios for stabilising the moduli via either D- or F-terms in the effective potential, and survey possible inflationary models in the presence of D-term stabilisation.Comment: 15 pages, 6 figures, plain Late

    Hilltop Non-Gaussianity

    Full text link
    We study non-Gaussianity induced by a pseudo Nambu-Goldstone boson with a cosine-type scalar potential. We focus on how the non-Gaussianity is affected when the pseudo Nambu-Goldstone boson rolls down from near the top of the scalar potential where the deviation from a quadratic potential is large. We find that the resultant non-Gaussianity is similar to that obtained in the quadratic potential, if the pseudo Nambu-Goldstone boson accounts for the curvature perturbation; the non-Gaussianity is enhanced, otherwise.Comment: 12 pages, 3 figures; References added; to appear in JCA

    Cosmology of neutrinos and extra light particles after WMAP3

    Full text link
    We study how present data probe standard and non-standard properties of neutrinos and the possible existence of new light particles, freely-streaming or interacting, among themselves or with neutrinos. Our results include: sum m_nu < 0.40 eV at 99.9% C.L.; that extra massless particles have abundance Delta N_nu = 2 pm 1 if freely-streaming and Delta N_nu = 0 pm 1.3 if interacting; that 3 interacting neutrinos are disfavored at about 4 sigma. We investigate the robustness of our results by fitting to different sub-sets of data. We developed our own cosmological computational tools, somewhat different from the standard ones.Comment: 18 pages, 8 figures. Added in v2: an explicit comparison of our code with CAMB, some clarifications on the statistical analysis and some references. Matches version published in JCA

    Crossing the phantom divide without phantom matter

    Get PDF
    A class of braneworld models can lead to phantom-like acceleration of the late universe, but without the need for any phantom matter. In the simplest models, the universe contains only cold dark matter and a cosmological constant. We generalize these models by introducing a quintessence field. The new feature in our models is that quintessence leads to a crossing of the phantom divide, w=1w=-1. This is a purely gravitational effect, and there is no phantom instability. Furthermore, the Hubble parameter is always decreasing, and there is no big rip singularity in the future.Comment: 5 pages, 5 figures, revtex

    Non-Gaussianity from isocurvature perturbations

    Full text link
    We develop a formalism to study non-Gaussianity in both curvature and isocurvature perturbations. It is shown that non-Gaussianity in the isocurvature perturbation between dark matter and photons leaves distinct signatures in the CMB temperature fluctuations, which may be confirmed in future experiments, or possibly, even in the currently available observational data. As an explicit example, we consider the QCD axion and show that it can actually induce sizable non-Gaussianity for the inflationary scale, H_{inf} = O(10^9 - 10^{11})GeV.Comment: 24 pages, 6 figures; references added; version to appear in JCA

    Slow Roll Reconstruction: Constraints on Inflation from the 3 Year WMAP Dataset

    Get PDF
    We study the constraints on the inflationary parameter space derived from the 3 year WMAP dataset using ``slow roll reconstruction'', using the SDSS galaxy power spectrum to gain further leverage where appropriate. This approach inserts the inflationary slow roll parameters directly into a Monte Carlo Markov chain estimate of the cosmological parameters, and uses the inflationary flow hierarchy to compute the parameters' scale-dependence. We work with the first three parameters (epsilon, eta and xi) and pay close attention to the possibility that the 3 year WMAP dataset contains evidence for a ``running'' spectral index, which is dominated by the xi term. Mirroring the WMAP team's analysis we find that the permitted distribution of xi is broad, and centered away from zero. However, when we require that inflationary parameters yield at least 30 additional e-folds of inflation after the largest observable scales leave the horizon, the bounds on xi tighten dramatically. We make use of the absence of an explicit pivot scale in the slow roll reconstruction formalism to determine the dependence of the computed parameter distributions on the pivot. We show that the choice of pivot has a significant effect on the inferred constraints on the inflationary variables, and the spectral index and running derived from them. Finally, we argue that the next round of cosmological data can be expected to place very stringent constraints on the region of parameter space open to single field models of slow roll inflation.Comment: 26 pages, 11 figures, JHEP format. v2: version accepted by JCAP: minor clarifications and references added, 1 figure added, v3: 1 reference adde
    corecore