311 research outputs found

    Composite S-Brane Solutions On Product Of Ricci-Flat Spaces

    Full text link
    A family of generalized SS-brane solutions with orthogonal intersection rules and nn Ricci-flat factor spaces in the theory with several scalar fields and antisymmetric forms is considered. Two subclasses of solutions with power-law and exponential behaviour of scale factors are singled out. These subclasses contain sub-families of solutions with accelerated expansion of certain factor spaces. The solutions depend on charge densities of branes, their dimensions and intersections, dilatonic couplings and the number of dilatonic fields.Comment: To appear in GR

    Passification-based adaptive control with quantized measurements

    Get PDF
    We propose and analyze passification-based adaptive controller for linear uncertain systems with quantized measurements. Since the effect of the quantization error is similar to the effect of a disturbance, the adaptation law with σ-modification is used. To ensure convergence to a smaller set, the parameters of the adaptation law are being switched during the evolution of the system and a dynamic quantizer is used. It is proved that if the quantization error is small enough then the proposed controller ensures convergence of the state of a hyper-minimum-phase system to an arbitrarily small vicinity of the origin. Applicability of the proposed controller to polytopic-type uncertain systems and its efficiency is demonstrated by the example of yaw angle control of a flying vehicle

    Adaptive control of passifiable linear systems with quantized measurements and bounded disturbances

    Get PDF
    We consider a linear uncertain system with an unknown bounded disturbance under a passification-based adaptive controller with quantized measurements. First, we derive conditions ensuring ultimate boundedness of the system. Then we develop a switching procedure for an adaptive controller with a dynamic quantizer that ensures convergence to a smaller set. The size of the limit set is defined by the disturbance bound. Finally, we demonstrate applicability of the proposed controller to polytopic-type uncertain systems and its efficiency by the example of a yaw angle control of a flying vehicle

    Decay of metastable current states in one-dimensional resonant tunneling devices

    Full text link
    Current switching in a double-barrier resonant tunneling structure is studied in the regime where the current-voltage characteristic exhibits intrinsic bistability, so that in a certain range of bias two different steady states of current are possible. Near the upper boundary V_{th} of the bistable region the upper current state is metastable, and because of the shot noise it eventually decays to the stable lower current state. We find the time of this switching process in strip-shaped devices, with the width small compared to the length. As the bias V is tuned away from the boundary value V_{th} of the bistable region, the mean switching time \tau increases exponentially. We show that in long strips \ln\tau \propto (V_{th} -V)^{5/4}, whereas in short strips \ln\tau \propto (V_{th} -V)^{3/2}. The one-dimensional geometry of the problem enables us to obtain analytically exact expressions for both the exponential and the prefactor of \tau. Furthermore, we show that, depending on the parameters of the system, the switching can be initiated either inside the strip, or at its ends.Comment: 12 pages, 5 figures, update to published versio

    Difficulties in learning the phonetics of the Chinese language, basic mistakes and means of correction

    Get PDF
    This article reviews the main difficulties Russian-speaking students encounter while studying the phonetics of the Chinese language, the mistakes that are often made by them at the beginning of learning pronunciation, as well as ways of correcting those mistakes

    Longitudinal muon spin relaxation in high purity aluminum and silver

    Full text link
    The time dependence of muon spin relaxation has been measured in high purity aluminum and silver samples in a longitudinal 2 T magnetic field at room temperature, using time-differential \musr. For times greater than 10 ns, the shape fits well to a single exponential with relaxation rates of \lambda_{\textrm{Al}} = 1.3 \pm 0.2\,(\textrm{stat.}) \pm 0.3\,(\textrm{syst.})\,\pms and \lambda_{\textrm{Ag}} = 1.0 \pm 0.2\,(\textrm{stat.}) \pm 0.2\,(\textrm{syst.})\,\pms

    Stochastic current switching in bistable resonant tunneling systems

    Full text link
    Current-voltage characteristics of resonant-tunneling structures often exhibit intrinsic bistabilities. In the bistable region of the I-V curve one of the two current states is metastable. The system switches from the metastable state to the stable one at a random moment in time. The mean switching time \tau depends exponentially on the bias measured from the boundary of the bistable region V_{th}. We find full expressions for \tau (including prefactors) as functions of bias, sample geometry, and in-plane conductivity. Our results take universal form upon appropriate renormalization of the threshold voltage V_{th}. We also show that in large samples the switching initiates inside, at the edge, or at a corner of the sample depending on the parameters of the system.Comment: 21 pages, 5 figure

    Controlling cluster synchronization by adapting the topology

    Get PDF
    We suggest an adaptive control scheme for the control of zero-lag and cluster synchronization in delay-coupled networks. Based on the speed-gradient method, our scheme adapts the topology of a network such that the target state is realized. It is robust towards different initial condition as well as changes in the coupling parameters. The emerging topology is characterized by a delicate interplay of excitatory and inhibitory links leading to the stabilization of the desired cluster state. As a crucial parameter determining this interplay we identify the delay time. Furthermore, we show how to construct networks such that they exhibit not only a given cluster state but also with a given oscillation frequency. We apply our method to coupled Stuart-Landau oscillators, a paradigmatic normal form that naturally arises in an expansion of systems close to a Hopf bifurcation. The successful and robust control of this generic model opens up possible applications in a wide range of systems in physics, chemistry, technology, and life science

    On the Coupling of Gravitons to Matter

    Full text link
    Using relationships between open and closed strings, we present a construction of tree-level scattering amplitudes for gravitons minimally coupled to matter in terms of gauge theory partial amplitudes. In particular, we present examples of amplitudes with gravitons coupled to vectors or to a single fermion pair. We also present two examples with massive graviton exchange, as would arise in the presence of large compact dimensions. The gauge charges are represented by flavors of dynamical scalars or fermions. This also leads to an unconventional decomposition of color and kinematics in gauge theories.Comment: RevTex, 4 page
    corecore