15 research outputs found

    The aminosterol antibiotic squalamine permeabilizes large unilamellar phospholipid vesicles.

    Get PDF
    AbstractThe ability of the shark antimicrobial aminosterol squalamine to induce the leakage of polar fluorescent dyes from large unilamellar phospholipid vesicles (LUVs) has been measured. Micromolar squalamine causes leakage of carboxyfluorescein (CF) from vesicles prepared from the anionic phospholipids phosphatidylglycerol (PG), phosphatidylserine (PS), and cardiolipin. Binding analyses based on the leakage data show that squalamine has its highest affinity to phosphatidylglycerol membranes, followed by phosphatidylserine and cardiolipin membranes. Squalamine will also induce the leakage of CF from phosphatidylcholine (PC) LUVs at low phospholipid concentrations. At high phospholipid concentrations, the leakage of CF from PC LUVs deviates from a simple dose–response relationship, and it appears that some of the squalamine can no longer cause leakage. Fluorescent dye leakage generated by squalamine is graded, suggesting the formation of a discrete membrane pore rather than a generalized disruption of vesicular membranes. By using fluorescently labeled dextrans of different molecular weight, material with molecular weight ≤4000 g/mol is released from vesicles by squalamine, but material with molecular weight ≥10,000 is retained. Negative stain electron microscopy of squalamine-treated LUVs shows that squalamine decreases the average vesicular size in a concentration-dependent manner. Squalamine decreases the size of vesicles containing anionic phospholipid at a lower squalamine/lipid molar ratio than pure PC LUVs. In a centrifugation assay, squalamine solubilizes phospholipid, but only at significantly higher squalamine/phospholipid ratios than required for either dye leakage or vesicle size reduction. Squalamine solubilizes PC at lower squalamine/phospholipid ratios than PG. We suggest that squalamine complexes with phospholipid to form a discrete structure within the bilayers of LUVs, resulting in the transient leakage of small encapsulated molecules. At higher squalamine/phospholipid ratios, these structures release from the bilayers and aggregate to form either new vesicles or squalamine/phospholipid mixed micelles

    Interrelationship of structure and function in maxillofacial fractures

    No full text
    © 2016 American Osteopathic Association. Surgical fixation of maxillofacial fractures can be associated with a myriad of surgical complications. Specific complications correlate with the type of fracture. The authors present a case of multiple maxillofacial fractures, briefly review various types of fractures, and discuss the operative decisionmaking process. This case report serves as an important reminder that the operative decision-making process should take into account a patient’s entire clinical condition

    Spectral Isolation and Measurement of Surface-Trapped State Multidimensional Nonlinear Susceptibility in Colloidal Quantum Dots

    Get PDF
    Multiresonant coherent multidimensional spectroscopy (CMDS) is a powerful new method for probing the coupling between vibrational modes and their dynamics. The line narrowing that occurs because of the multidimensional nature of CMDS allows the separation of homogeneous and inhomogeneous broadening and enhances spectral resolution. Recent work has extended multiresonant CMDS to electronic resonances in quantum confined nanostructures. Vibrational modes of the solvent also appear in the CMDS spectra. The phase oscillations of the vibrational and electronic coherences interfere and change the line shapes. Since the form of the vibrational third-order susceptibility and hyperpolarizability are well-known and since they can be measured against known standards, it becomes possible to use the interference effects as a probe of the absolute magnitude and phase of the electronic resonances. This approach is demonstrated using PbSe quantum dots where incomplete capping causes ultrafast relaxation to a new electronic state that appears directly in the CMDS spectra. The new state is believed to be a mixed core/surface exciton. Closed-form expressions for the electronic nonlinearities are used to analyze the frequency dependence of the fully resonant complex hyperpolarizability of the 1S exciton and the surface-trapped state. The ability of mixed frequency/time domain multiresonant CMDS methods to spectrally resolve surface states promises to be an important new way to characterize the interface states in complex heterostructures and the surface states that define the stability of nanostructures resulting from different synthetic strategies

    Spectral Isolation and Measurement of Surface-Trapped State Multidimensional Nonlinear Susceptibility in Colloidal Quantum Dots

    No full text
    Multiresonant coherent multidimensional spectroscopy (CMDS) is a powerful new method for probing the coupling between vibrational modes and their dynamics. The line narrowing that occurs because of the multidimensional nature of CMDS allows the separation of homogeneous and inhomogeneous broadening and enhances spectral resolution. Recent work has extended multiresonant CMDS to electronic resonances in quantum confined nanostructures. Vibrational modes of the solvent also appear in the CMDS spectra. The phase oscillations of the vibrational and electronic coherences interfere and change the line shapes. Since the form of the vibrational third-order susceptibility and hyperpolarizability are well-known and since they can be measured against known standards, it becomes possible to use the interference effects as a probe of the absolute magnitude and phase of the electronic resonances. This approach is demonstrated using PbSe quantum dots where incomplete capping causes ultrafast relaxation to a new electronic state that appears directly in the CMDS spectra. The new state is believed to be a mixed core/surface exciton. Closed-form expressions for the electronic nonlinearities are used to analyze the frequency dependence of the fully resonant complex hyperpolarizability of the 1S exciton and the surface-trapped state. The ability of mixed frequency/time domain multiresonant CMDS methods to spectrally resolve surface states promises to be an important new way to characterize the interface states in complex heterostructures and the surface states that define the stability of nanostructures resulting from different synthetic strategies

    Multiresonant Coherent Multidimensional Electronic Spectroscopy of Colloidal PbSe Quantum Dots

    No full text
    We demonstrate the use of multiresonant coherent multidimensional spectroscopy (CMDS) for obtaining 2D spectra of the diagonal and cross-peaks of the 1S and 1P excitons and biexcitons in PbSe quantum dots and their coherent and incoherent dynamics. We show that multiresonant CMDS line narrows the inhomogeneous broadening and resolves the excitonic peaks from the background that often obscures peaks. We develop theoretical methods that extract details of the homogeneous and inhomogeneous broadening, the Coulombic coupling within the biexciton, and the relative exciton and biexciton transition moments. The population dynamics are measured by scanning the excitation pulse time delays over all time orderings. Phase modulations of individual coherences are observed because of heterodyning between scattered light and the four-wave mixing signal. The experiments demonstrate that CMDS can be used to obtain quantum state resolved dynamics of the electronic states in complex nanostructures and other important materials

    Additional file 1: Table S1. of Charting health system reconstruction in post-war Liberia: a comparison of rural vs. remote healthcare utilization

    No full text
    Receipt of Maternal and Child Health Services (Adjusted): Percent of the population receiving maternal and child health services in the rural subsection of DHS 2007, DHS 2013 and the Konobo survey, with 95 % confidence intervals. (DOCX 96 kb
    corecore