16 research outputs found

    Involvement of the Serotonin Transporter Gene in Accurate Subcortical Speech Encoding

    Get PDF
    A flourishing line of evidence has highlighted the encoding of speech sounds in the subcortical auditory system as being shaped by acoustic, linguistic, and musical experience and training. And while the heritability of auditory speech as well as nonspeech processing has been suggested, the genetic determinants of subcortical speech processing have not yet been uncovered. Here, we postulated that the serotonin transporter-linked polymorphic region (5-HTTLPR), a common functional polymorphism located in the promoter region of the serotonin transporter gene (SLC6A4), is implicated in speech encoding in the human subcortical auditory pathway. Serotonin has been shown as essential for modulating the brain response to sound both cortically and subcortically, yet the genetic factors regulating this modulation regarding speech sounds have not been disclosed. We recorded the frequency following response, a biomarker of the neural tracking of speech sounds in the subcortical auditory pathway, and cortical evoked potentials in 58 participants elicited to the syllable /ba/, which was presented >2000 times. Participants with low serotonin transporter expression had higher signal-to-noise ratios as well as a higher pitch strength representation of the periodic part of the syllable than participants with medium to high expression, possibly by tuning synaptic activity to the stimulus features and hence a more efficient suppression of noise. These results imply the 5-HTTLPR in subcortical auditory speech encoding and add an important, genetically determined layer to the factors shaping the human subcortical response to speech sounds. SIGNIFICANCE STATEMENT: The accurate encoding of speech sounds in the subcortical auditory nervous system is of paramount relevance for human communication, and it has been shown to be altered in different disorders of speech and auditory processing. Importantly, this encoding is plastic and can therefore be enhanced by language and music experience. Whether genetic factors play a role in speech encoding at the subcortical level remains unresolved. Here we show that a common polymorphism in the serotonin transporter gene relates to an accurate and robust neural tracking of speech stimuli in the subcortical auditory pathway. This indicates that serotonin transporter expression, eventually in combination with other polymorphisms, delimits the extent to which lifetime experience shapes the subcortical encoding of speech

    The Relationship Between Dehydroepiandrosterone (DHEA), Working Memory and Distraction - a Behavioral and Electrophysiological Approach

    Get PDF
    Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulphate (DHEAS) have been reported to have memory enhancement effects in humans. A neuro-stimulatory action and an anti-cortisol mechanism of action may contribute to that relation. In order to study DHEA, DHEAS and cortisol relations to working memory and distraction, we recorded the electroencephalogram of 23 young women performing a discrimination (no working memory load) or 1-back (working memory load) task in an audio-visual oddball paradigm. We measured salivary DHEA, DHEAS and cortisol both before each task and at 30 and 60 min. Under working memory load, a higher baseline cortisol/DHEA ratio was related to higher distraction as indexed by an enhanced novelty P3. This suggests that cortisol may lead to increased distraction whereas DHEA may hinder distraction by leading to less processing of the distractor. An increased DHEA production with consecutive cognitive tasks was found and higher DHEA responses attributed to working memory load were related to enhanced working memory processing as indexed by an enhanced visual P300. Overall, the results suggest that in women DHEA may oppose cortisol effects reducing distraction and that a higher DHEA response may enhance working memory at the electrophysiological level

    1000 preguntes per 3 qüestionaris i 500 estudiants

    Get PDF
    Assignatura de Psicofisiologia, 2n semestre, Grau de Psicologia UB. 2013-2014Cada mes, els estudiants han de contestar un qüestionari amb preguntes relacionades amb els temes treballats fins el moment en l’assignatura. Respondre’l requereix la cerca informació específica en webs, llibres o articles científics. Disposen d’una setmana per contestar-lo, sense límit d’entrades

    Involvement of the Serotonin Transporter Gene in Accurate Subcortical Speech Encoding

    No full text
    A flourishing line of evidence has highlighted the encoding of speech sounds in the subcortical auditory system as being shaped by acoustic, linguistic, and musical experience and training. And while the heritability of auditory speech as well as nonspeech processing has been suggested, the genetic determinants of subcortical speech processing have not yet been uncovered. Here, we postulated that the serotonin transporter-linked polymorphic region (5-HTTLPR), a common functional polymorphism located in the promoter region of the serotonin transporter gene (SLC6A4), is implicated in speech encoding in the human subcortical auditory pathway. Serotonin has been shown as essential for modulating the brain response to sound both cortically and subcortically, yet the genetic factors regulating this modulation regarding speech sounds have not been disclosed. We recorded the frequency following response, a biomarker of the neural tracking of speech sounds in the subcortical auditory pathway, and cortical evoked potentials in 58 participants elicited to the syllable /ba/, which was presented >2000 times. Participants with low serotonin transporter expression had higher signal-to-noise ratios as well as a higher pitch strength representation of the periodic part of the syllable than participants with medium to high expression, possibly by tuning synaptic activity to the stimulus features and hence a more efficient suppression of noise. These results imply the 5-HTTLPR in subcortical auditory speech encoding and add an important, genetically determined layer to the factors shaping the human subcortical response to speech sounds. SIGNIFICANCE STATEMENT: The accurate encoding of speech sounds in the subcortical auditory nervous system is of paramount relevance for human communication, and it has been shown to be altered in different disorders of speech and auditory processing. Importantly, this encoding is plastic and can therefore be enhanced by language and music experience. Whether genetic factors play a role in speech encoding at the subcortical level remains unresolved. Here we show that a common polymorphism in the serotonin transporter gene relates to an accurate and robust neural tracking of speech stimuli in the subcortical auditory pathway. This indicates that serotonin transporter expression, eventually in combination with other polymorphisms, delimits the extent to which lifetime experience shapes the subcortical encoding of speech

    The Relationship Between Dehydroepiandrosterone (DHEA), Working Memory and Distraction - a Behavioral and Electrophysiological Approach

    No full text
    Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulphate (DHEAS) have been reported to have memory enhancement effects in humans. A neuro-stimulatory action and an anti-cortisol mechanism of action may contribute to that relation. In order to study DHEA, DHEAS and cortisol relations to working memory and distraction, we recorded the electroencephalogram of 23 young women performing a discrimination (no working memory load) or 1-back (working memory load) task in an audio-visual oddball paradigm. We measured salivary DHEA, DHEAS and cortisol both before each task and at 30 and 60 min. Under working memory load, a higher baseline cortisol/DHEA ratio was related to higher distraction as indexed by an enhanced novelty P3. This suggests that cortisol may lead to increased distraction whereas DHEA may hinder distraction by leading to less processing of the distractor. An increased DHEA production with consecutive cognitive tasks was found and higher DHEA responses attributed to working memory load were related to enhanced working memory processing as indexed by an enhanced visual P300. Overall, the results suggest that in women DHEA may oppose cortisol effects reducing distraction and that a higher DHEA response may enhance working memory at the electrophysiological level

    The Relationship between Dehydroepiandrosterone (DHEA), Working Memory and Distraction – A Behavioral and Electrophysiological Approach

    No full text
    <div><p>Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulphate (DHEAS) have been reported to have memory enhancement effects in humans. A neuro-stimulatory action and an anti-cortisol mechanism of action may contribute to that relation. In order to study DHEA, DHEAS and cortisol relations to working memory and distraction, we recorded the electroencephalogram of 23 young women performing a discrimination (no working memory load) or 1-back (working memory load) task in an audio-visual oddball paradigm. We measured salivary DHEA, DHEAS and cortisol both before each task and at 30 and 60 min. Under working memory load, a higher baseline cortisol/DHEA ratio was related to higher distraction as indexed by an enhanced novelty P3. This suggests that cortisol may lead to increased distraction whereas DHEA may hinder distraction by leading to less processing of the distractor. An increased DHEA production with consecutive cognitive tasks was found and higher DHEA responses attributed to working memory load were related to enhanced working memory processing as indexed by an enhanced visual P300. Overall, the results suggest that in women DHEA may oppose cortisol effects reducing distraction and that a higher DHEA response may enhance working memory at the electrophysiological level.</p></div

    Event Related Brain Potentials (ERPs).

    No full text
    <p>A) Grand average waveforms at Cz for both tasks (WM0 and WM1) and type of sound (standard and novel). B) Auditory P3 (aud P3) amplitude for each task (WM0 and WM1) and type of sound (standard and novel). C) Grand-average of novel minus standard difference waves at Cz. WM0 – discrimination task; WM1 – working memory task; NovP3 – novelty P3; s - seconds. Bars represent +/– standard error of the mean (SEM).</p

    The visP300 amplitude changed between tasks (WM0, WM1) in direct relation to DHEA response.

    No full text
    <p>WM0 – discrimination task; WM1 – working memory task. Δ DHEA response = DHEA response in WM1 – DHEA response in WM0; Δ visP300 = mean visual P300 in WM1 - mean visual P300 in WM0.</p

    Endocrine results.

    No full text
    <p>A) Mean DHEA levels for each task and order. B) DHEA response for each task and order. C) Mean cortisol levels for each task and order. D) DHEA and cortisol responses (after task/before task ratios) were directly related in the discrimination task. E) DHEA and cortisol responses were directly related in the working memory task. WM0 – discrimination task; WM1 – working memory task; DHEA response: DHEA after task/before task ratio; Cortisol response: Cortisol after task/before task ratio; order WM0-WM1 – the discrimination task performed firstly and the working memory task performed secondly; order WM1-WM0 – the working memory task performed firstly and the discrimination task performed secondly. Error bars represent +/− standard error of the mean (SEM).</p
    corecore