1,273 research outputs found

    An airfoil for general aviation applications

    Get PDF
    A new airfoil, the NLF(1)-0115, has been recently designed at the NASA Langley Research Center for use in general-aviation applications. During the development of this airfoil, special emphasis was placed on experiences and observations gleaned from other successful general-aviation airfoils. For example, the flight lift-coefficient range is the same as that of the turbulent-flow NACA 23015 airfoil. Also, although beneficial for reducing drag and having large amounts of lift, the NLF(1)-0115 avoids the use of aft loading which can lead to large stick forces if utilized on portions of the wing having ailerons. Furthermore, not using aft loading eliminates the concern that the high pitching-moment coefficient generated by such airfoils can result in large trim drags if cruise flaps are not employed. The NASA NLF(1)-0115 has a thickness of 15 percent. It is designed primarily for general-aviation aircraft with wing loadings of 718 to 958 N/sq m (15 to 20 lb/sq ft). Low profile drag as a result of laminar flow is obtained over the range from c sub l = 0.1 and R = 9x10(exp 6) (the cruise condition) to c sub l = 0.6 and R = 4 x 10(exp 6) (the climb condition). While this airfoil can be used with flaps, it is designed to achieve c(sub l, max) = 1.5 at R = 2.6 x 10(exp 6) without flaps. The zero-lift pitching moment is held at c sub m sub o = 0.055. The hinge moment for a .20c aileron is fixed at a value equal to that of the NACA 63 sub 2-215 airfoil, c sub h = 0.00216. The loss in c (sub l, max) due to leading edge roughness, rain, or insects at R = 2.6 x 10 (exp 6) is 11 percent as compared with 14 percent for the NACA 23015

    Evolutionary optimization of optical antennas

    Full text link
    The design of nano-antennas is so far mainly inspired by radio-frequency technology. However, material properties and experimental settings need to be reconsidered at optical frequencies, which entails the need for alternative optimal antenna designs. Here a checkerboard-type, initially random array of gold cubes is subjected to evolutionary optimization. To illustrate the power of the approach we demonstrate that by optimizing the near-field intensity enhancement the evolutionary algorithm finds a new antenna geometry, essentially a split-ring/two-wire antenna hybrid which surpasses by far the performance of a conventional gap antenna by shifting the n=1 split-ring resonance into the optical regime.Comment: Also see Supplementary material, as attached to the main pape

    Experiments of Propeller-Induced Flow Effects on a Low-Reynolds-Number Wing

    Get PDF
    Novel findings are discussed in this paper that will be especially beneficial to designers and modelers of small-scale unmanned air vehicles and high-altitude long-endurance vehicles that both operate at low Reynolds numbers (Re = 50,000-300,000). Propeller-induced Oow effects in both tractor and pusher configurations on a recta ngular wing using the Wortmann FX 63-137 airfoil (a common low-Reynolds-number high-lift airfoil) are presented in this paper . Significant performance benefits can be found for a wing in the tractor configuration. Experiments, including trip tests and upper-surface oil Dow visualization, show and verify that the propeller slipstream induces early transition to turbulent Oow in the regions within the slipstrean1 and the premature fomiation of a separation bubble in the regions outside the slipstream. The result is a reduction of pressure drag and an increase in lift of the wing where lift-to-drag ratios arc as high as 10-12 (a maximum of\u27 70% increase in lift-to-drag ratio from a clean wing configuration) and are measured at both low and high angles of attack up to s tall (0-16 deg). Similar performance benefits are n ot observed in pusher configuration results where only increased local Oow velocity and varying inOow angle effects are apparent. Thus, contrary to the design rules for optimal performance of wings at high Reynolds number s, at low Reynolds numbers, a propeller in the tractor configuration exhibits significant performance improvements, especially in cruise configurations Oow angles of attack), as compared with a propeller in the pusher configuration or even a clean wing

    No equity, no triple aim: strategic proposals to advance health equity in a volatile policy environment

    Get PDF
    Health professionals, including social workers, community health workers, public health workers, and licensed health care providers, share common interests and responsibilities in promoting health equity and improving social determinants of health—the conditions in which we live, work, play, and learn. This article summarizes underlying causes of health inequity and comparatively poor health outcomes in the U.S. It describes barriers to realizing the hope embedded in the 2010 Patient Protection and Affordable Care Act that moving away from fee-for-service payments will naturally drive care upstream as providers respond to greater financial risk for the health of their patients by undertaking greater prevention efforts. The article asserts that health equity should serve as the guiding framework for achieving the Triple Aim of health care reform. It outlines practical opportunities for improving care and for promoting stronger efforts to address social determinants of health. These proposals include developing a dashboard of measures to assist providers committed to health equity and community-based prevention and to promote institutional accountability for addressing socio-economic factors that influence health

    Slipstream Measurements of Small-Scale Propellers at Low Reynolds Numbers

    Get PDF
    The continuing growth in the use of small UAVs has required the need to more fully understand the propellers that power them. Part of this understanding is the behavior of the propeller slipstream. Using a 7-hole probe, the slipstreams of several small-scale propellers (diameters of 4.2, 5, and 9 in) were measured in both static (V∞ = 0) and advancing-flow (V∞ \u3e 0) conditions at several locations downstream. For static conditions, as the slipstream expanded downstream, the maximum values of the axial and swirl velocities decreased. The general shape of the static slipstream was also found to be nearly the same for the propellers even though their planforms were different. During advancing-flow conditions, a contraction in the slipstream occurred by 0.5 diameters behind the propeller. Beyond that location, the size of the slipstream was relatively constant up to 3 diameters downstream (furthest distance measured). For advancing-flow slipstreams, the shape of the axial velocity distribution was observed to be dependent on the planform shape of the propeller. The static slipstream of a propeller-wing configuration showed that the slipstream portions above and below the wing moved away from each other towards opposite wing tips. However, the maximum axial and swirl velocities in the propeller-wing slipstream did not diminish compared with the isolated propeller slipstream

    The Effects of the Critical Ice Accretion on Airfoil and Wing Performance

    Get PDF
    In support of the NASA Lewis Modern Airfoils Ice Accretion Test Program, the University of Illinois at Urbana-Champaign provided expertise in airfoil design and aerodynamic analysis to determine the aerodynamic effect of ice accretion on modern airfoil sections. The effort has concentrated on establishing a design/testing methodology for "hybrid airfoils" or "sub-scale airfoils," that is, airfoils having a full-scale leading edge together with a specially designed and foreshortened aft section. The basic approach of using a full-scale leading edge with a foreshortened aft section was considered to a limited extent over 40 years ago. However, it was believed that the range of application of the method had not been fully exploited. Thus a systematic study was being undertaken to investigate and explore the range of application of the method so as to determine its overall potential

    No equity, no triple aim: strategic proposals to advance health equity in a volatile policy environment

    Get PDF
    Health professionals, including social workers, community health workers, public health workers, and licensed health care providers, share common interests and responsibilities in promoting health equity and improving social determinants of health—the conditions in which we live, work, play, and learn. This article summarizes underlying causes of health inequity and comparatively poor health outcomes in the U.S. It describes barriers to realizing the hope embedded in the 2010 Patient Protection and Affordable Care Act that moving away from fee-for-service payments will naturally drive care upstream as providers respond to greater financial risk for the health of their patients by undertaking greater prevention efforts. The article asserts that health equity should serve as the guiding framework for achieving the Triple Aim of health care reform. It outlines practical opportunities for improving care and for promoting stronger efforts to address social determinants of health. These proposals include developing a dashboard of measures to assist providers committed to health equity and community-based prevention and to promote institutional accountability for addressing socio-economic factors that influence health
    • …
    corecore