70 research outputs found

    Application of the Water Evaluation and Planning (WEAP) Model to simulate current and future water demand in the Blue Nile

    Get PDF
    The riparian countries of the Nile have agreed to collaborate in the development of its water resources for sustainable socioeconomic growth. Currently there is significant potential for expansion of hydropower and irrigation in the Blue Nile River in both Ethiopia and Sudan. However, the likely consequences of upstream development on downstream flows have not been fully assessed and the water resource implications of development in both countries are unclear. Against this background, the Water Evaluation And Planning (WEAP) model was used to provide an assessment of both the current situation and a future (2015) scenario. The future scenario incorporated new irrigation and hydropower schemes on the main stem of the Nile and its principal tributaries. Data for all existing and planned schemes were obtained from the basin master plans as well as from scheme feasibility studies. Water use was simulated over a 32-year period of varying rainfall and flow. Preliminary results indicate that currently irrigation demand in Sudan is approximately 8.5 Bm3y-1 for 1.16 million hectares (mha). This compares to a total irrigation demand in Ethiopia of just 0.2 Bm3y-1. By 2015, with many existing schemes being extended in Sudan and new schemes being developed in both countries, irrigation demand is estimated to increase to 13.4 Bm3y-1 for 2.13 mha in Sudan and 1.1 Bm3y-1 for 210 thousand hectares (tha) in Ethiopia. The flow of the Blue Nile is estimated to decline from an average of 46.9 Bm3y-1 to 44.8 Bm3y-1 at the Ethiopia-Sudan border and from a current average of 43.2 Bm3y-1 to 36.2 Bm3y-1 at Khartoum (including evaporation from all reservoirs). Although total flows are reduced, greater regulation results in higher dry season flows at both locations.Length: pp.78-88River basin developmentSimulation modelsPlanningEvaluationWater demandReservoirsDams

    Decision support systems for dam planning and operation in Africa

    Get PDF

    Nile Basin Focal Project. Synthesis report

    No full text
    The Nile basin experiences wide spread poverty, lack of food and land and water degradation. Because poverty is linked to access to water for crop, fish and livestock based livelihoods, improving access to water and increasing agricultural water productivity can potentially contribute substantially to poverty reduction. The major goal of the Nile Basin Focal project is to identify high potential investments that reduce poverty yet reverse trends in land and water degradation. This is done through the implementation of six interlinked work packages allowing us to examine water availability, access, use, productivity, institutions and their linkages to poverty. Important in the Nile BFP is knowledge management and the uptake of results for ultimate impact

    A Methodology for the Vulnerability Analysis of the Climate Change in the Oromia Region, Ethiopia

    Get PDF
    Goal of the vulnerability research of the last years is to evaluate which community, region, or nation is more vulnerable in terms of its sensitive to damaging effects of extreme meteorological events like floods or droughts. Ethiopia is a country where it is possible to find the described conditions. Aim of this work was to develop an integrated system of early warning and response, whereas neither landmark data nor vulnerability drought analysis existed in the country. Specifically, a vulnerability index and a capacity to react index of the population of three Woredas in the Oromia Region of Ethiopia were determined and analysed. Input data concerned rainfall, water availability, physical land characteristics, agricultural and livestock dimensions, as well as population and socio-economic indices. Data were collected during a specific NGO project and thanks to a field research funded by the University of Torino. Results were analysed and specific maps were drawn. The mapping of the vulnerability indices revealed that the more isolated Woreda with less communication roads and with less water sources presented the worst data almost on all its territory. Despite not bad vulnerability indices in the other two Woredas, however, population here still encountered difficulty to adapt to sudden climatic changes, as revealed by the other index of capacity to reaction. Beyond the interpretation of each parameter, a more complete reading key was possible using the SPI (Standardized Precipitation Index) beside these indicators. In a normalized scale between 0 and 1, in this study the calculated annual SPI index was 0.83: the area is therefore considerably exposed to the drought risk, caused by an high intensity and frequency of rainfall lack

    Comparison of existing Koka dam release rules with HEC-5: A dam DSS tool release rules

    No full text

    Recent changes in dry spell and extreme rainfall events in Ethiopia

    No full text
    This paper assesses recent changes in extremes of seasonal rainfall in Ethiopia based on daily rainfall data for 11 key stations over the period 1965–2002. The seasons considered are Kiremt (‘main rains', June–September) and Belg (‘small rains', February/March–May). The Mann-Kendall and linear regression trend tests show decreasing trends in the Kiremt and the Belg extreme intensity and maximum consecutive 5-day rains over eastern, southwestern and southern parts of Ethiopia whereas no trends are found in the remaining part of Ethiopia. In general, no trends are found in the yearly maximum length of Kiremt and Belg dry spells (days with rainfall below 1 mm) over Ethiopia
    • …
    corecore