176 research outputs found

    Random matrix theory, the exceptional Lie groups, and L-functions

    Full text link
    There has recently been interest in relating properties of matrices drawn at random from the classical compact groups to statistical characteristics of number-theoretical L-functions. One example is the relationship conjectured to hold between the value distributions of the characteristic polynomials of such matrices and value distributions within families of L-functions. These connections are here extended to non-classical groups. We focus on an explicit example: the exceptional Lie group G_2. The value distributions for characteristic polynomials associated with the 7- and 14-dimensional representations of G_2, defined with respect to the uniform invariant (Haar) measure, are calculated using two of the Macdonald constant term identities. A one parameter family of L-functions over a finite field is described whose value distribution in the limit as the size of the finite field grows is related to that of the characteristic polynomials associated with the 7-dimensional representation of G_2. The random matrix calculations extend to all exceptional Lie groupsComment: 14 page

    Weighted Bergman kernels and virtual Bergman kernels

    Full text link
    We introduce the notion of "virtual Bergman kernel" and apply it to the computation of the Bergman kernel of "domains inflated by Hermitian balls", in particular when the base domain is a bounded symmetric domain.Comment: 12 pages. One-hour lecture for graduate students, SCV 2004, August 2004, Beijing, P.R. China. V2: typo correcte

    Periodic orbit spectrum in terms of Ruelle--Pollicott resonances

    Full text link
    Fully chaotic Hamiltonian systems possess an infinite number of classical solutions which are periodic, e.g. a trajectory ``p'' returns to its initial conditions after some fixed time tau_p. Our aim is to investigate the spectrum tau_1, tau_2, ... of periods of the periodic orbits. An explicit formula for the density rho(tau) = sum_p delta (tau - tau_p) is derived in terms of the eigenvalues of the classical evolution operator. The density is naturally decomposed into a smooth part plus an interferent sum over oscillatory terms. The frequencies of the oscillatory terms are given by the imaginary part of the complex eigenvalues (Ruelle--Pollicott resonances). For large periods, corrections to the well--known exponential growth of the smooth part of the density are obtained. An alternative formula for rho(tau) in terms of the zeros and poles of the Ruelle zeta function is also discussed. The results are illustrated with the geodesic motion in billiards of constant negative curvature. Connections with the statistical properties of the corresponding quantum eigenvalues, random matrix theory and discrete maps are also considered. In particular, a random matrix conjecture is proposed for the eigenvalues of the classical evolution operator of chaotic billiards

    Numerical Study of Length Spectra and Low-lying Eigenvalue Spectra of Compact Hyperbolic 3-manifolds

    Full text link
    In this paper, we numerically investigate the length spectra and the low-lying eigenvalue spectra of the Laplace-Beltrami operator for a large number of small compact(closed) hyperbolic (CH) 3-manifolds. The first non-zero eigenvalues have been successfully computed using the periodic orbit sum method, which are compared with various geometric quantities such as volume, diameter and length of the shortest periodic geodesic of the manifolds. The deviation of low-lying eigenvalue spectra of manifolds converging to a cusped hyperbolic manifold from the asymptotic distribution has been measured by ζ\zeta- function and spectral distance.Comment: 19 pages, 18 EPS figures and 2 GIF figures (fig.10) Description of cusped manifolds in section 2 is correcte

    Renormalization : A number theoretical model

    Get PDF
    We analyse the Dirichlet convolution ring of arithmetic number theoretic functions. It turns out to fail to be a Hopf algebra on the diagonal, due to the lack of complete multiplicativity of the product and coproduct. A related Hopf algebra can be established, which however overcounts the diagonal. We argue that the mechanism of renormalization in quantum field theory is modelled after the same principle. Singularities hence arise as a (now continuously indexed) overcounting on the diagonals. Renormalization is given by the map from the auxiliary Hopf algebra to the weaker multiplicative structure, called Hopf gebra, rescaling the diagonals.Comment: 15 pages, extended version of talks delivered at SLC55 Bertinoro,Sep 2005, and the Bob Delbourgo QFT Fest in Hobart, Dec 200

    A Hierarchical Array of Integrable Models

    Full text link
    Motivated by Harish-Chandra theory, we construct, starting from a simple CDD\--pole SS\--matrix, a hierarchy of new SS\--matrices involving ever ``higher'' (in the sense of Barnes) gamma functions.These new SS\--matrices correspond to scattering of excitations in ever more complex integrable models.From each of these models, new ones are obtained either by ``qq\--deformation'', or by considering the Selberg-type Euler products of which they represent the ``infinite place''. A hierarchic array of integrable models is thus obtained. A remarkable diagonal link in this array is established.Though many entries in this array correspond to familiar integrable models, the array also leads to new models. In setting up this array we were led to new results on the qq\--gamma function and on the qq\--deformed Bloch\--Wigner function.Comment: 18 pages, EFI-92-2

    Finite N Fluctuation Formulas for Random Matrices

    Full text link
    For the Gaussian and Laguerre random matrix ensembles, the probability density function (p.d.f.) for the linear statistic j=1N(xj)\sum_{j=1}^N (x_j - ) is computed exactly and shown to satisfy a central limit theorem as NN \to \infty. For the circular random matrix ensemble the p.d.f.'s for the linear statistics 12j=1N(θjπ){1 \over 2} \sum_{j=1}^N (\theta_j - \pi) and j=1Nlog2sinθj/2- \sum_{j=1}^N \log 2|\sin \theta_j/2| are calculated exactly by using a constant term identity from the theory of the Selberg integral, and are also shown to satisfy a central limit theorem as NN \to \infty.Comment: LaTeX 2.09, 11 pages + 3 eps figs (needs epsf.sty

    Distribution of Eigenvalues for the Modular Group

    Full text link
    The two-point correlation function of energy levels for free motion on the modular domain, both with periodic and Dirichlet boundary conditions, are explicitly computed using a generalization of the Hardy-Littlewood method. It is shown that ion the limit of small separations they show an uncorrelated behaviour and agree with the Poisson distribution but they have prominent number-theoretical oscillations at larger scale. The results agree well with numerical simulations.Comment: 72 pages, Latex, the fiogures mentioned in the text are not vital, but can be obtained upon request from the first Autho

    Multifractal stationary random measures and multifractal random walks with log-infinitely divisible scaling laws

    Full text link
    We define a large class of continuous time multifractal random measures and processes with arbitrary log-infinitely divisible exact or asymptotic scaling law. These processes generalize within a unified framework both the recently defined log-normal Multifractal Random Walk (MRW) [Bacry-Delour-Muzy] and the log-Poisson "product of cynlindrical pulses" [Barral-Mandelbrot]. Our construction is based on some ``continuous stochastic multiplication'' from coarse to fine scales that can be seen as a continuous interpolation of discrete multiplicative cascades. We prove the stochastic convergence of the defined processes and study their main statistical properties. The question of genericity (universality) of limit multifractal processes is addressed within this new framework. We finally provide some methods for numerical simulations and discuss some specific examples.Comment: 24 pages, 4 figure

    Symmetry Decomposition of Chaotic Dynamics

    Full text link
    Discrete symmetries of dynamical flows give rise to relations between periodic orbits, reduce the dynamics to a fundamental domain, and lead to factorizations of zeta functions. These factorizations in turn reduce the labor and improve the convergence of cycle expansions for classical and quantum spectra associated with the flow. In this paper the general formalism is developed, with the NN-disk pinball model used as a concrete example and a series of physically interesting cases worked out in detail.Comment: CYCLER Paper 93mar01
    corecore