Abstract

For the Gaussian and Laguerre random matrix ensembles, the probability density function (p.d.f.) for the linear statistic j=1N(xj)\sum_{j=1}^N (x_j - ) is computed exactly and shown to satisfy a central limit theorem as NN \to \infty. For the circular random matrix ensemble the p.d.f.'s for the linear statistics 12j=1N(θjπ){1 \over 2} \sum_{j=1}^N (\theta_j - \pi) and j=1Nlog2sinθj/2- \sum_{j=1}^N \log 2|\sin \theta_j/2| are calculated exactly by using a constant term identity from the theory of the Selberg integral, and are also shown to satisfy a central limit theorem as NN \to \infty.Comment: LaTeX 2.09, 11 pages + 3 eps figs (needs epsf.sty

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 15/02/2019