54 research outputs found

    Crystal structure of human selenocysteine tRNA

    Get PDF
    Selenocysteine (Sec) is the 21st amino acid in translation. Sec tRNA (tRNASec) has an anticodon complementary to the UGA codon. We solved the crystal structure of human tRNASec. tRNASec has a 9-bp acceptor stem and a 4-bp T stem, in contrast with the 7-bp acceptor stem and the 5-bp T stem in the canonical tRNAs. The acceptor stem is kinked between the U6:U67 and G7:C66 base pairs, leading to a bent acceptor-T stem helix. tRNASec has a 6-bp D stem and a 4-nt D loop. The long D stem includes unique A14:U21 and G15:C20a pairs. The D-loop:T-loop interactions include the base pairs G18:U55 and U16:U59, and a unique base triple, U20:G19:C56. The extra arm comprises of a 6-bp stem and a 4-nt loop. Remarkably, the D stem and the extra arm do not form tertiary interactions in tRNASec. Instead, tRNASec has an open cavity, in place of the tertiary core of a canonical tRNA. The linker residues, A8 and U9, connecting the acceptor and D stems, are not involved in tertiary base pairing. Instead, U9 is stacked on the first base pair of the extra arm. These features might allow tRNASec to be the target of the Sec synthesis/incorporation machineries

    Crystallization and preliminary X-ray crystallographic analysis of bacterial tRNA Sec

    No full text

    A novel conformation of RNA polymerase sheds light on the mechanism of transcription

    No full text
    Transcription is a complicated, multistep process requiring stringent control. Its accuracy may be achieved in part by the conformational changes of RNA polymerase (RNAP). Here, we discuss the functional relevance of the recently reported conformational changes of RNAP, which may affect transcription control, RNAP translocation and transcription termination

    A three-dimensional structure model of the complex of glutamyl-tRNA synthetase and its cognate tRNA

    Get PDF
    AbstractA docking model of glutamyl-tRNA synthetase (GluRS) and tRNAGlu was constructed, on the basis of the distinguished similarity between the X-ray crystallographic three-dimensional structures of the N-terminal halves of the Thermus thermophilus GluRS in the free state and the Escherichia coli glutaminyl-tRNA synthetase in a complex with tRNAGln. The modeled structure is energetically favorable and is also well consistent with the results of site-directed mutagenesis studies. The model indicates that the GluRS-specific insertions 2 and 3 fit and bind to the acceptor stem and the D arm, respectively, of the cognate tRNA without affecting other contacts. In particular, insertion 3 strongly interacts with the two D-stem base pairs that are essential for the tRNAĀ·GluRS recognition

    Mechanism of molecular interactions for tRNA(Val) recognition by valyl-tRNA synthetase

    No full text
    The molecular interactions between valyl-tRNA synthetase (ValRS) and tRNA(Val), with the C34-A35-C36 anticodon, from Thermus thermophilus were studied by crystallographic analysis and structure-based mutagenesis. In the ValRS-bound structure of tRNA(Val), the successive A35-C36 residues (the major identity elements) of tRNA(Val) are base-stacked upon each other, and fit into a pocket on the Ī±-helix bundle domain of ValRS. Hydrogen bonds are formed between ValRS and A35-C36 of tRNA(Val) in a base-specific manner. The C-terminal coiled-coil domain of ValRS interacts electrostatically with A20 and hydrophobically with the G19ā€¢C56 tertiary base pair. The loss of these interactions by the deletion of the coiled-coil domain of ValRS increased the K(M) value for tRNA(Val) 28-fold and decreased the k(cat) value 19-fold in the aminoacylation. The tRNA(Val) K(M) and k(cat) values were increased 21-fold and decreased 32-fold, respectively, by the disruption of the G18ā€¢U55 and G19ā€¢C56 tertiary base pairs, which associate the D- and T-loops for the formation of the L-shaped tRNA structure. Therefore, the coiled-coil domain of ValRS is likely to stabilize the L-shaped tRNA structure during the aminoacylation reaction

    Decameric SelAā€¢tRNA Sec

    No full text
    • ā€¦
    corecore