160 research outputs found

    Studies of exotic hadrons by high-energy exclusive reactions

    Full text link
    We investigate the possibility of clarifying internal structure of exotic hadrons by high-energy exclusive reactions. In particular, the constituent-counting rule could be used for determining the internal configuration in large-angle exclusive scattering. As an example, we show the cross section pi^- + p -> K^0 + Lambda(1405) in comparison with the one for the ground-state Lambda production pi^- + p -> K^0 + Lambda. The counting rule indicates that the cross section scales as s^8 dsigma /dt=constant if Lambda(1405) is an ordinary three-quark baryon, whereas it is s^{10} dsigma /dt=constant if Lambda(1405) is a five-quark baryon. Here, s and t are Mandelstam variables. Such experiments could be possible at J-PARC, LEP, JLab, CERN-COMPASS, and other high-energy facilities.Comment: 4 pages, 7 figures, 12th Asia Pacific Physics Conference (APPC12), JPS Conference Proceedings in pres

    Internal structure of exotic hadrons by high-energy exclusive reactions

    Full text link
    We propose to use high-energy exclusive reactions for probing internal structure of exotic hadron candidates. First, the constituent counting rule of perturbative QCD can be used for finding internal configurations of an exotic hadron candidate. It is because the number of constituents (nn), which participate in the exclusive reaction, is found by the scaling behavior of the cross section dσ/dt1/sn2d\sigma/dt \propto 1/s^{n-2} at large momentum transfer, where ss is the center-of-mass energy squared. As an example, we show that the internal structure of Λ(1405)\Lambda \, (1405) should be found, for example, by the reaction π+pK0+Λ(1405)\pi^- + p \to K^0 + \Lambda (1405). Second, the internal structure of exotic hadron candidates should be investigated by hadron tomography with generalized parton distributions (GPDs) and generalized distribution amplitudes (GDAs) in exclusive reactions. Exotic nature should be reflected in the GPDs which contain two factors, longitudinal parton distributions as indicated by the constituent counting rule and transverse form factors as suggested by the hadron size. The GDAs should be investigated by the two-photon process γγhhˉ\gamma^* \gamma \to h\bar h, for example h=f0h=f_0 or a0a_0, in electron-positron annihilation. Since the GDAs contain information on a time-like form factor, exotic nature should be found by studying the hhˉh\bar h invariant mass dependence of the cross section. The internal structure of exotic hadron candidates should be clarified by the exclusive reactions at facilities such as J-PARC and KEKB.Comment: 6 pages, LaTeX, 9 eps files, JPS Conference Proceedings of the 2nd International Symposium on Science at J-PARC (J-PARC 2014), Tsukuba, Japan, July 12-15, 201

    Exotic atoms and exotic nuclei

    Get PDF
    We briefly review the study of the exotic atoms and exotic nuclei, and report recent research activities of eta-mesic nucleus and kaonic atoms in this article.Comment: 6 pages, 2 figures. Talk given at II Symposium on applied nuclear physics and innovative technologies, Jagiellonian University, Krakow, Poland, Acta Physica Polonica B (2015) in pres

    Exotic-Hadron Signature by Constituent-Counting Rule in Perturbative QCD

    Full text link
    We explain a method to find internal quark configurations of exotic hadron candidates by using the constituent counting rule. The counting rule was theoretically predicted in perturbative QCD for hard exclusive hadron reactions, and it has been tested in experiments for stable hadrons including compound systems of hadrons such as the deuteron, 3^3H, and 3^3He. It indicates that the cross section scales as dσ/dt1/sn2d\sigma /dt \sim 1/s^{n-2}, where ss is the center-of-mass energy squared and nn is the total number of constituents. We apply this method for finding internal configurations of exotic hadron candidates, especially Λ(1405)\Lambda (1405). There is a possibility that Λ(1405)\Lambda (1405) could be five-quark state or a KˉN\bar K N molecule, and scaling properties should be different between the ordinary three-quark state or five-quark one. We predict such a difference in π+pK0+Λ(1405)\pi^- + p \to K^0 + \Lambda (1405), and it could be experimentally tested, for example, at J-PARC. On the other hand, there are already measurements for γ+pK++Λ(1405)\gamma + p \to K^+ + \Lambda (1405) as well as the ground Λ\Lambda in photoproduction reactions. Analyzing such data, we found an interesting indication that Λ(1405)\Lambda (1405) looks like a five-quark state at medium energies and a three-quark one at high energies. However, accurate higher-energy measurements are necessary for drawing a solid conclusion, and it should be done at JLab by using the updated 12 GeV electron beam. Furthermore, we discuss studies of exotic hadron candidates, such as f0(980)f_0 (980) and a0(980)a_0 (980), in electron-positron annihilation by using generalized distribution amplitudes and the counting rule. These studies should be possible as a KEKB experiment.Comment: 6 pages, LaTeX, 10 eps files, to be published in JPS Conf. Proc., Proceedings of the 14th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU2016), July 25-30, 2016, Kyoto, Japa

    Formation of Heavy Meson Bound States by Two Nucleon Pick-up Reactions

    Full text link
    We develop a model to evaluate the formation rate of the heavy mesic nuclei in the two nucleon pick-up reactions, and apply it to the 6^6Li target cases for the formation of heavy meson-α\alpha bound states, as examples. The existence of the quasi-deuteron in the target nucleus is assumed in this model. It is found that the mesic nuclei formation in the recoilless kinematics is possible even for heavier mesons than nucleon in the two nucleon pick-up reactions. We find the formation rate of the meson-α\alpha bound states can be around half of the elementary cross sections at the recoilless kinematics with small distortions.Comment: 1 table, 10 figures, 8 page

    Formation spectra of light kaonic nuclei by in-flight (Kˉ,N{\bar K},N) reactions with chiral unitary amplitude

    Full text link
    We study theoretically the in-flight (K,NK^-,N) reactions for the formation of light kaonic nuclear systems to get deeper physical insights on the expected spectra, and to investigate the experimental feasibility of the reaction at new facilities like J-PARC. We show the expected spectra for the formation of the Kpp,KpnK^-pp, K^-pn, KnnK^-nn and KK^--11^{11}B systems which are accessible by the (K,NK^-,N) experiments. By considering the conversion part of the Green's function, we can show the missing mass spectra of the (K,NK^-,N) reactions coincidence with the particle emissions due to Kˉ{\bar K} absorption in KˉNπY{\bar K}N\to \pi Y processes. To calculate the cross sections, we use the so-called TρT\rho approximation to evaluate the optical potential. As for the amplitude TT, we adopt the chiral unitary amplitude of KˉN{\bar K}N channel in vacuum for simplicity, and we also check the medium effects by applying the chiral amplitude at finite density. The effects of the p-wave optical potential of Σ\Sigma(1385) channel and the contribution from Kˉ0{\bar K^0} mixing in 3^3He(K,nK^-,n) reaction are also evaluated numerically. To understand the meanings of the spectrum shape, we also study the behavior of the poles of kaon Green's function in nuclear matter. We conclude that 3^3He(K,nK^-,n) and 3^3He(K,pK^-,p) reactions coincident with the πΣ\pi\Sigma emission due to Kˉ{\bar K} absorption may show the certain structure in the bound region spectra indicating the existence of the unstable kaonic nuclear bound states. As for the 12^{12}C(K,pK^-,p) spectra with the πΣ\pi\Sigma emission, we may also observe the structure in the bound region, however, we need to evaluate the medium effects carefully for larger nuclei.Comment: 14 pages, 12 figure

    The γγ\gamma \gamma decay of the f0(1370)f_0(1370) and f2(1270)f_2(1270) resonances in the hidden gauge formalism

    Full text link
    Using recent results obtained within the hidden gauge formalism for vector mesons, in which the f0(1370)f_0(1370) and f2(1270)f_2(1270) resonances are dynamically generated resonances from the ρρ\rho \rho interaction, we evaluate the radiative decay of these resonances into γγ\gamma \gamma. We obtain results for the width in good agreement with the experimental data for the f2(1270)f_2(1270) state and a width about a factor five smaller for the f0(1370)f_0(1370) resonance, which would agree with preliminary results from the Belle collaboration, hinting at an order of magnitude smaller width for this resonance than for the f2(1270)f_2(1270).Comment: 7 pages, 9 figures, proof of gauge invariance adde
    corecore