432 research outputs found

    Aldose reductase gene is associated with diabetic macroangiopathy in Japanese Type 2 diabetic patients

    Get PDF
    AIMS: The aldose reductase (AR) gene, a rate-limiting enzyme of the polyol pathway, has been investigated as a candidate gene in determining susceptibility to diabetic microangiopathy. However, the association of the AR gene with diabetic macroangiopathy has not been investigated. Therefore, the present study was conducted to determine whether genetic variations of AR may determine susceptibility to diabetic macroangiopathy. METHODS: There were 378 Type 2 diabetic patients enrolled in this study. A single nucleotide polymorphism in the promoter region (C-106T) was genotyped and the AR protein content of erythrocytes measured by ELISA. RESULTS: There were no significant differences in genotypic or allelic distribution in patients with or without ischaemic heart diseases, but there was a significant increase in the frequency of the CT + TT genotype and T allele in patients with stroke (P = 0.019 and P = 0.012). The erythrocyte AR protein content was increased in patients with the CT and TT genotype compared with those with the CC genotype. After adjustment for age, duration of diabetes, body mass index, systolic blood pressure, HbA(1c), and serum creatinine, triglycerides, and total cholesterol in multivariate logistic-regression models, the association between this AR genotype and stroke remained significant. CONCLUSIONS: Our results suggest that the CT or TT genotype of the AR gene might be a genetic marker of susceptibility to stroke in Type 2 diabetic patients. This observation might contribute to the development of strategies for the prevention of stroke in Type 2 diabetic patients

    Synergistic Effect of SRY and Its Direct Target, WDR5, on Sox9 Expression

    Get PDF
    SRY is a sex-determining gene that encodes a transcription factor, which triggers male development in most mammals. The molecular mechanism of SRY action in testis determination is, however, poorly understood. In this study, we demonstrate that WDR5, which encodes a WD-40 repeat protein, is a direct target of SRY. EMSA experiments and ChIP assays showed that SRY could bind to the WDR5 gene promoter directly. Overexpression of SRY in LNCaP cells significantly increased WDR5 expression concurrent with histone H3K4 methylation on the WDR5 promoter. To specifically address whether SRY contributes to WDR5 regulation, we introduced a 4-hydroxy-tamoxifen-inducible SRY allele into LNCaP cells. Conditional SRY expression triggered enrichment of SRY on the WDR5 promoter resulting in induction of WDR5 transcription. We found that WDR5 was self regulating through a positive feedback loop. WDR5 and SRY interacted and were colocalized in cells. In addition, the interaction of WDR5 with SRY resulted in activation of Sox9 while repressing the expression of β-catenin. These results suggest that, in conjunction with SRY, WDR5 plays an important role in sex determination

    Analysis of Medaka sox9 Orthologue Reveals a Conserved Role in Germ Cell Maintenance

    Get PDF
    The sex determining gene is divergent among different animal species. However, sox9 is up-regulated in the male gonads in a number of species in which it is the essential regulator of testis determination. It is therefore often discussed that the sex determining gene-sox9 axis functions in several vertebrates. In our current study, we show that sox9b in the medaka (Oryzias latipes) is one of the orthologues of mammalian Sox9 at syntenic and expression levels. Medaka sox9b affects the organization of extracellular matrices, which represents a conserved role of sox9, but does not directly regulate testis determination. We made this determination via gene expression and phenotype analyses of medaka with different copy numbers of sox9b. Sox9b is involved in promoting cellular associations and is indispensible for the proper proliferation and survival of germ cells in both female and male medaka gonads. Medaka mutants that lack sox9b function exhibit a seemingly paradoxical phenotype of sex reversal to male. This is explained by a reduction in the germ cell number associated with aberrant extracellular matrices. Together with its identified roles in other vertebrate gonads, a testis-determining role for Sox9 in mammals is likely to have been neofunctionalized and appended to its conserved role in germ cell maintenance

    N-acetylgalactosaminyl transferase-3 is a potential new marker for non-small cell lung cancers

    Get PDF
    N-acetylgalactosaminyl transferase-3 (GalNAc-T3) is an enzyme involved in the initial glycosylation of mucin-type O-linked proteins. In the present study, we used immunohistochemistry to examine GalNAc-T3 expression in 215 surgically resected non-small cell lung cancers. We analysed the biological and clinical importance of GalNAc-T3 expression, especially with regard to its potential as a prognostic factor. We found that normal bronchial epithelial cells, bronchial gland cells, and alveolar pneumocytes showed cytoplasmic immunostaining for GalNAc-T3. Low expression of GalNAc-T3, observed in 93 of 215 tumours (43.4%), was found more frequently in tumours from smokers than those from nonsmokers (P=0.001), in squamous cell carcinomas than nonsquamous cell carcinomas (P<0.0001), and in moderately and poorly differentiated tumours than well differentiated tumours (P=0.0002). Multivariate logistic regression analysis showed that an association of low GalNAc-T3 expression with squamous cell carcinomas was the only one significant relationship of GalNAc-T3 expression with various factors (P<0.0001). Moreover, tumours losing GalNAc-T3 expression had a significantly higher Ki-67 labelling index than tumours retaining GalNAc-T3 expression (P=0.0003). Patients with low GalNAc-T3 expression survived a significantly shorter time than patients with high GalNAc-T3 expression in 103 pStage I non-small cell lung cancers (5-year survival rates, 58% and 78%, respectively; P=0.02 by log-rank test) as well as in 61 pStage I nonsquamous cell carcinomas (5-year survival rates, 63% and 85%, respectively; P=0.03). Low GalNAc-T3 expression was an unfavourable prognostic factor in pStage I non-small cell lung cancers (hazards ratio, 2.04; P=0.03), and in pStage I nonsquamous cell carcinomas (hazards ratio, 2.70; P=0.03). These results suggest that GalNAc-T3 is a new marker of non-small cell lung cancers with specificity for histology and prognosis

    A Novel Mouse Fgfr2 Mutant, Hobbyhorse (hob), Exhibits Complete XY Gonadal Sex Reversal

    Get PDF
    The secreted molecule fibroblast growth factor 9 (FGF9) plays a critical role in testis determination in the mouse. In embryonic gonadal somatic cells it is required for maintenance of SOX9 expression, a key determinant of Sertoli cell fate. Conditional gene targeting studies have identified FGFR2 as the main gonadal receptor for FGF9 during sex determination. However, such studies can be complicated by inefficient and variable deletion of floxed alleles, depending on the choice of Cre deleter strain. Here, we report a novel, constitutive allele of Fgfr2, hobbyhorse (hob), which was identified in an ENU-based forward genetic screen for novel testis-determining loci. Fgr2hob is caused by a C to T mutation in the invariant exon 7, resulting in a polypeptide with a mis-sense mutation at position 263 (Pro263Ser) in the third extracellular immunoglobulin-like domain of FGFR2. Mutant homozygous embryos show severe limb and lung defects and, when on the sensitised C57BL/6J (B6) genetic background, undergo complete XY gonadal sex reversal associated with failure to maintain expression of Sox9. Genetic crosses employing a null mutant of Fgfr2 suggest that Fgr2hob is a hypomorphic allele, affecting both the FGFR2b and FGFR2c splice isoforms of the receptor. We exploited the consistent phenotype of this constitutive mutant by analysing MAPK signalling at the sex-determining stage of gonad development, but no significant abnormalities in mutant embryos were detected
    corecore