101 research outputs found

    Super-Sentinel Chickens and Detection of Low-Pathogenicity Influenza Virus

    Get PDF
    Chicken interferon-α administered perorally in drinking water acts on the oropharyngeal mucosal system as an adjuvant that causes chickens to rapidly seroconvert after natural infection by low-pathogenicity Influenza virus. These chickens, termed super sentinels, can serve as sensitive early detectors of clinically inapparent infections

    Population dynamics of an RNA virus and its defective interfering particles in passage cultures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Viruses can fall prey to their defective interfering (DI) particles. When viruses are cultured by serial passage on susceptible host cells, the presence of virus-like DI particles can cause virus populations to rise and fall, reflecting predator-prey interactions between DI and virus particles. The levels of virus and DI particles in each population passage can be determined experimentally by plaque and yield-reduction assays, respectively.</p> <p>Results</p> <p>To better understand DI and virus particle interactions we measured vesicular stomatitis virus and DI particle production during serial-passage culture on BHK cells. When the multiplicity of infection (MOI, or ratio of infectious virus particles to cells) was fixed, virus yields followed a pattern of progressive decline, with higher MOI driving earlier and faster drops in virus level. These patterns of virus decline were consistent with predictions from a mathematical model based on single-passage behavior of cells co-infected with virus and DI particles. By contrast, the production of virus during fixed-volume passages exhibited irregular fluctuations that could not be described by either the steady-state or regular oscillatory dynamics of the model. However, these irregularities were, to a significant degree, reproduced when measured host-cell levels were incorporated into the model, revealing a high sensitivity of virus and DI particle populations to fluctuations in available cell resources.</p> <p>Conclusions</p> <p>This study shows how the development of mathematical models, when guided by quantitative experiments, can provide new insight into the dynamic behavior of virus populations.</p

    Immune-Related Gene Expression in Two B-Complex Disparate Genetically Inbred Fayoumi Chicken Lines Following Eimeria maxima Infection

    Get PDF
    To investigate the influence of genetic differences in the MHC on susceptibility to avian coccidiosis, M5.1 and M15.2 B-haplotype-disparate Fayoumi chickens were orally infected with live Eimeria maxima oocysts, and BW gain, fecal oocyst production, and expression of 14 immune-related genes were determined as parameters of protective immunity. Weight loss was reduced and fecal parasite numbers were lower in birds of the M5.1 line compared with M15.2 line birds. Intestinal intraepithelial lymphocytes from M5.1 chickens expressed greater levels of transcripts encoding interferon-γ (IFN-γ), interleukin-1β (IL-1β), IL-6, IL-8, IL-12, IL-15, IL-17A, inducible nitric oxide synthase, and lipopolysaccharide-induced tumor necrosis factor-α factor and lower levels of mRNA for IFN-α, IL-10, IL-17D, NK-lysin, and tumor necrosis factor superfamily 15 compared with the M15.2 line. In the spleen, E. maxima infection was associated with greater expression levels of IFN-γ, IL-15, and IL-8 and lower levels of IL-6, IL-17D, and IL-12 in M5.1 vs. M15.2 birds. These results suggest that genetic determinants within the chicken MHC influence resistance to E. maxima infection by controlling the local and systemic expression of immune-related cytokine and chemokine genes

    Avian Influenza: Should China Be Alarmed?

    Get PDF
    Avian influenza has emerged as one of the primary public health concern of the 21st century. Influenza strain H5N1 is capable of incidentally infecting humans and other mammals. Since their reemergence in 2003, highly pathogenic avian influenza A (H5N1) viruses have been transmitted from poultry to humans (by direct or indirect contact with infected birds) in several provinces of Mainland China, which has resulted in 22 cases of human infection and has created repercussions for the Chinese economy. People have been concerned whether a new pandemic will occur in the future. The eradication of pathogenic avian influenza viruses appears to be the most effective way to prevent an influenza pandemic. This paper will examine the features of H5N1, including incidence, infection, immunity, clinical management, prevention and control, and therapy in Mainland China

    Interferon Induction by Viruses. XXV. Adenoviruses as inducers of interferon in deelopmentally aged primary chicken embryo cells

    No full text
    Chicken embryonic cells (CEC) are nonpermissive hosts for the replication of human adenoviruses, yet they respond to infection by producing interferon (IFN). The nature of the IFN inducer moiety in these viruses has been elusive since its initial study by Ilona Béládi and colleagues some 40 years ago. We tested the hypothesis that viral dsRNA was the IFN inducer molecule - for two reasons: dsRNA has been identified as a potent inducer of IFN, and developmentally mature CEC cells as cultured in vitro can develop a hyper-responsive state to dsRNA such that a single molecule of dsRNA per cell constitutes the threshold of detection. Furthermore, the number of particles in a virus population capable of inducing-IFN, irrespective of their replication capacity, can be quantified through the analysis of dose (multiplicity)-response (IFN yield) curves, thus allowing a determination of the number particles in virus populations that possess the capacity to induce IFN. This study demonstrates that type 5 wild type adenovirus (Ad5) and mutants dl312, dl334, and ts19 induce from 8,000 to 80,000 IFN U per 107 CEC. UV irradiation showed that transcription of about 20-50% of the Ad5 genome was required to produce the IFN inducer moiety. The ratio of IFN-inducing particles to plaque-forming particles (IFP: PFP) was as low as 1:6, indicating that only a small fraction of the total particles in a virus population ever function as IFP. We conclude that adenovirus dsRNA produced during symmetric transcription of some regions of the viral genome, coupled with fine-tuning of the IFN-induction pathway, account for the IFN-inducing capacity of adenoviruses in the non-permissive chicken cell
    corecore