8,996 research outputs found

    Detection of Dark Matter Concentrations in the Field of Cl 1604+4304 from Weak Lensing Analysis

    Get PDF
    We present a weak-lensing analysis of a region around the galaxy cluster Cl 1604+4304 (z=0.897) on the basis of the deep observations with the HST/WFPC2. We apply a variant of Schneider's aperture mass technique to the observed WFPC2 field and obtain the distribution of weak-lensing signal-to-noise (S/N) ratio within the field. The resulting S/N map reveals a clear pronounced peak located about 1.7 arcmin (850h_{50}^{-1} kpc at z=0.897) southwest of the second peak associated with the optical cluster center determined from the dynamical analysis of Postman et al. A non-linear finite-field inversion method has been used to reconstruct the projected mass distribution from the observed shear field. The reconstructed mass map shows a super-critical feature at the location of the S/N peak as well as in the cluster central region. Assuming the redshift distribution of field galaxies, we obtain the total mass in the observed field to be 1.0 h_{50}^{-1} 10^{15} M_sun for =1.0. The estimated mass within a circular aperture of radius 280h_{50}^{-1} kpc centered on the dark clump is 2.4h_{50}^{-1} 10^{14} M_sun. We have confirmed the existence of the ` dark ' mass concentration from another deep HST observation with a slightly different ~20 arcsec pointing.Comment: 7 pages, 3 figure

    Double lenses

    Full text link
    The analysis of the shear induced by a single cluster on the images of a large number of background galaxies is all centered around the curl-free character of a well-known vector field that can be derived from the data. Such basic property breaks down when the source galaxies happen to be observed through two clusters at different redshifts, partially aligned along the line of sight. In this paper we address the study of double lenses and obtain five main results. (i) First we generalize the procedure to extract the available information, contained in the observed shear field, from the case of a single lens to that of a double lens. (ii) Then we evaluate the possibility of detecting the signature of double lensing given the known properties of the distribution of clusters of galaxies. (iii) As a different astrophysical application, we demonstrate how the method can be used to detect the presence of a dark cluster that might happen to be partially aligned with a bright cluster studied in terms of statistical lensing. (iv) In addition, we show that the redshift distribution of the source galaxies, which in principle might also contribute to break the curl-free character of the shear field, actually produces systematic effects typically two orders of magnitude smaller than the double lensing effects we are focusing on. (v) Remarkably, a discussion of relevant contributions to the noise of the shear measurement has brought up an intrinsic limitation of weak lensing analyses, since one specific contribution, associated with the presence of a non-vanishing two-galaxy correlation function, turns out not to decrease with the density of source galaxies (and thus with the depth of the observations).Comment: 40 pages, 15 figures. Accepted for publication in ApJ main journa

    Weak Lensing Reconstruction and Power Spectrum Estimation: Minimum Variance Methods

    Full text link
    Large-scale structure distorts the images of background galaxies, which allows one to measure directly the projected distribution of dark matter in the universe and determine its power spectrum. Here we address the question of how to extract this information from the observations. We derive minimum variance estimators for projected density reconstruction and its power spectrum and apply them to simulated data sets, showing that they give a good agreement with the theoretical minimum variance expectations. The same estimator can also be applied to the cluster reconstruction, where it remains a useful reconstruction technique, although it is no longer optimal for every application. The method can be generalized to include nonlinear cluster reconstruction and photometric information on redshifts of background galaxies in the analysis. We also address the question of how to obtain directly the 3-d power spectrum from the weak lensing data. We derive a minimum variance quadratic estimator, which maximizes the likelihood function for the 3-d power spectrum and can be computed either from the measurements directly or from the 2-d power spectrum. The estimator correctly propagates the errors and provides a full correlation matrix of the estimates. It can be generalized to the case where redshift distribution depends on the galaxy photometric properties, which allows one to measure both the 3-d power spectrum and its time evolution.Comment: revised version, 36 pages, AAS LateX, submitted to Ap

    Microlensing events from the 11-year observations of the Wendelstein Calar Alto Pixellensing Project

    Full text link
    We present the results of the decade-long M31 observation from the Wendelstein Calar Alto Pixellensing Project (WeCAPP). WeCAPP has monitored M31 from 1997 till 2008 in both R- and I-filters, thus provides the longest baseline of all M31 microlensing surveys. The data are analyzed with the difference imaging analysis, which is most suitable to study variability in crowded stellar fields. We extracted light curves based on each pixel, and devised selection criteria that are optimized to identify microlensing events. This leads to 10 new events, and sums up to a total of 12 microlensing events from WeCAPP, for which we derive their timescales, flux excesses, and colors from their light curves. The color of the lensed stars fall between (R-I) = 0.56 to 1.36, with a median of 1.0 mag, in agreement with our expectation that the sources are most likely bright, red stars at post main-sequence stage. The event FWHM timescales range from 0.5 to 14 days, with a median of 3 days, in good agreement with predictions based on the model of Riffeser et al. (2006).Comment: 44 pages, 16 figures, 5 tables. ApJ accepte

    The Effects of Massive Substructures on Image Multiplicities in Gravitati onal Lenses

    Full text link
    Surveys for gravitational lens systems have typically found a significantly larger fraction of lenses with four (or more) images than are predicted by standard ellipsoidal lens models (50% versus 25-30%). We show that including the effects of smaller satellite galaxies, with an abundance normalized by the observations, significantly increases the expected number of systems with more than two images and largely explains the discrepancy. The effect is dominated by satellites with ~20% the luminosity of the primary lens, in rough agreement with the typical luminosities of the observed satellites. We find that the lens systems with satellites cannot, however, be dropped from estimates of the cosmological model based on gravitational lens statistics without significantly biasing the results.Comment: 23 pages, 7 figures, more discussion of sis vs sie and inclusion of uncorrelated contribution

    Weak Lensing Analysis of the z~0.8 cluster CL 0152-1357 with the Advanced Camera for Surveys

    Full text link
    We present a weak lensing analysis of the X-ray luminous cluster CL 0152-1357 at z~0.84 using HST/ACS observations. The unparalleled resolution and sensitivity of ACS enable us to measure weakly distorted, faint background galaxies to the extent that the number density reaches ~175 arcmin^-2. The PSF of ACS has a complicated shape that also varies across the field. We construct a PSF model for ACS from an extensive investigation of 47 Tuc stars in a modestly crowded region. We show that this model PSF excellently describes the PSF variation pattern in the cluster observation when a slight adjustment of ellipticity is applied. The high number density of source galaxies and the accurate removal of the PSF effect through moment-based deconvolution allow us to restore the dark matter distribution of the cluster in great detail. The direct comparison of the mass map with the X-ray morphology from Chandra observations shows that the two peaks of intracluster medium traced by X-ray emission are lagging behind the corresponding dark matter clumps, indicative of an on-going merger. The overall mass profile of the cluster can be well described by an NFW profile with a scale radius of r_s =309+-45 kpc and a concentration parameter of c=3.7+-0.5. The mass estimates from the lensing analysis are consistent with those from X-ray and Sunyaev-Zeldovich analyses. The predicted velocity dispersion is also in good agreement with the spectroscopic measurement from VLT observations. In the adopted WMAP cosmology, the total projected mass and the mass-to-light ratio within 1 Mpc are estimated to be 4.92+-0.44 10^14 solar mass and 95+-8 solar mass/solar luminosity, respectively.Comment: Accepted for publication in Astrophysical Journal. 58 pages, 26 figures. Figures have been degraded to meet size limit; a higher resolution version available at http://acs.pha.jhu.edu/~mkjee/ms_cl0152.pd

    Critical behaviour of combinatorial search algorithms, and the unitary-propagation universality class

    Full text link
    The probability P(alpha, N) that search algorithms for random Satisfiability problems successfully find a solution is studied as a function of the ratio alpha of constraints per variable and the number N of variables. P is shown to be finite if alpha lies below an algorithm--dependent threshold alpha\_A, and exponentially small in N above. The critical behaviour is universal for all algorithms based on the widely-used unitary propagation rule: P[ (1 + epsilon) alpha\_A, N] ~ exp[-N^(1/6) Phi(epsilon N^(1/3)) ]. Exponents are related to the critical behaviour of random graphs, and the scaling function Phi is exactly calculated through a mapping onto a diffusion-and-death problem.Comment: 7 pages; 3 figure

    High-Redshift Galaxies: Their Predicted Size and Surface Brightness Distributions and Their Gravitational Lensing Probability

    Get PDF
    Direct observations of the first generation of luminous objects will likely become feasible over the next decade. The advent of the Next Generation Space Telescope (NGST) will allow imaging of numerous galaxies and mini-quasars at redshifts z>5. We apply semi-analytic models of structure formation to estimate the rate of multiple imaging of these sources by intervening gravitational lenses. Popular CDM models for galaxy formation yield a lensing optical depth of about 1% for sources at redshift 10. The expected slope of the luminosity function of the early sources implies an additional magnification bias of about 5, bringing the fraction of lensed sources at z=10 to about 5%. We estimate the angular size distribution of high-redshift disk galaxies and find that most of them are more extended than the resolution limit of NGST, roughly 0.06 arcseconds. We also show that there is only a modest redshift evolution in the mean surface brightness of galaxies at z>2. The expected increase by 1-2 orders of magnitude in the number of resolved sources on the sky, due to observations with NGST, will dramatically improve upon the statistical significance of existing weak lensing measurements. We show that, despite this increase in the density of sources, confusion noise from z>2 galaxies is expected to be small for NGST observations.Comment: 27 pages, 8 PostScript figures (of which two are new), revised version accepted for Ap

    The Wendelstein Calar Alto Pixellensing Project (WeCAPP): the M31 Nova catalogue

    Full text link
    We present light curves from the novae detected in the long-term, M31 monitoring WeCAPP project. The goal of WeCAPP is to constrain the compact dark matter fraction of the M31 halo with microlensing observations. As a by product we have detected 91 novae benefiting from the high cadence and highly sensitive difference imaging technique required for pixellensing. We thus can now present the largest CCD and optical filters based nova light curve sample up-to-date towards M31. We also obtained thorough coverage of the light curve before and after the eruption thanks to the long-term monitoring. We apply the nova taxonomy proposed by Strope et al. (2010) to our nova candidates and found 29 S-class novae, 10 C-class novae, 2 O-class novae and 1 J-class nova. We have investigated the universal decline law advocated by Hachichu and Kato (2006) on the S-class novae. In addition, we correlated our catalogue with the literature and found 4 potential recurrent novae. Part of our catalogue has been used to search for optical counter-parts of the super soft X-ray sources detected in M31 (Pietsch et al. 2005). Optical surveys like WeCAPP, and coordinated with multi-wavelength observation, will continue to shed light on the underlying physical mechanism of novae in the future.Comment: 15 pages, 15 figures, 7 tables, A&A accepted for publication. The appendix is stored in the Data Conservanc
    • …
    corecore