11,569 research outputs found
Implementation of robust image artifact removal in SWarp through clipped mean stacking
We implement an algorithm for detecting and removing artifacts from
astronomical images by means of outlier rejection during stacking. Our method
is capable of addressing both small, highly significant artifacts such as
cosmic rays and, by applying a filtering technique to generate single frame
masks, larger area but lower surface brightness features such as secondary
(ghost) images of bright stars. In contrast to the common method of building a
median stack, the clipped or outlier-filtered mean stacked point-spread
function (PSF) is a linear combination of the single frame PSFs as long as the
latter are moderately homogeneous, a property of great importance for weak
lensing shape measurement or model fitting photometry. In addition, it has
superior noise properties, allowing a significant reduction in exposure time
compared to median stacking. We make publicly available a modified version of
SWarp that implements clipped mean stacking and software to generate single
frame masks from the list of outlier pixels.Comment: PASP accepted; software for download at
http://www.usm.uni-muenchen.de/~dgruen
Ionic conductivity and relaxation dynamics in plastic-crystals with nearly globular molecules
We have performed a dielectric investigation of the ionic charge transport
and the relaxation dynamics in plastic-crystalline 1-cyano-adamantane (CNA) and
in two mixtures of CNA with the related plastic crystals adamantane or
2-adamantanon. Ionic charge carriers were provided by adding 1% of Li salt. The
molecules of these compounds have nearly globular shape and, thus, the
so-called revolving-door mechanism assumed to promote ionic charge transport
via molecular reorientations in other PC electrolytes, should not be active
here. Indeed, a comparison of the dc resistivity and the reorientational
alpha-relaxation times in the investigated PCs, reveals complete decoupling of
both dynamics. Similar to other PCs, we find a significant mixing-induced
enhancement of the ionic conductivity. Finally, these solid-state electrolytes
reveal a second relaxation process, slower than the alpha-relaxation, which is
related to ionic hopping. Due to the mentioned decoupling, it can be
unequivocally detected and is not superimposed by the reorientational
contributions as found for most other ionic conductors.Comment: 9 pages, 7 figure
Performance of internal Covariance Estimators for Cosmic Shear Correlation Functions
Data re-sampling methods such as the delete-one jackknife are a common tool
for estimating the covariance of large scale structure probes. In this paper we
investigate the concepts of internal covariance estimation in the context of
cosmic shear two-point statistics. We demonstrate how to use log-normal
simulations of the convergence field and the corresponding shear field to carry
out realistic tests of internal covariance estimators and find that most
estimators such as jackknife or sub-sample covariance can reach a satisfactory
compromise between bias and variance of the estimated covariance.
In a forecast for the complete, 5-year DES survey we show that internally
estimated covariance matrices can provide a large fraction of the true
uncertainties on cosmological parameters in a 2D cosmic shear analysis. The
volume inside contours of constant likelihood in the -
plane as measured with internally estimated covariance matrices is on average
of the volume derived from the true covariance matrix. The
uncertainty on the parameter combination derived from internally estimated covariances is of
the true uncertainty.Comment: submitted to mnra
Double lenses
The analysis of the shear induced by a single cluster on the images of a
large number of background galaxies is all centered around the curl-free
character of a well-known vector field that can be derived from the data. Such
basic property breaks down when the source galaxies happen to be observed
through two clusters at different redshifts, partially aligned along the line
of sight. In this paper we address the study of double lenses and obtain five
main results. (i) First we generalize the procedure to extract the available
information, contained in the observed shear field, from the case of a single
lens to that of a double lens. (ii) Then we evaluate the possibility of
detecting the signature of double lensing given the known properties of the
distribution of clusters of galaxies. (iii) As a different astrophysical
application, we demonstrate how the method can be used to detect the presence
of a dark cluster that might happen to be partially aligned with a bright
cluster studied in terms of statistical lensing. (iv) In addition, we show that
the redshift distribution of the source galaxies, which in principle might also
contribute to break the curl-free character of the shear field, actually
produces systematic effects typically two orders of magnitude smaller than the
double lensing effects we are focusing on. (v) Remarkably, a discussion of
relevant contributions to the noise of the shear measurement has brought up an
intrinsic limitation of weak lensing analyses, since one specific contribution,
associated with the presence of a non-vanishing two-galaxy correlation
function, turns out not to decrease with the density of source galaxies (and
thus with the depth of the observations).Comment: 40 pages, 15 figures. Accepted for publication in ApJ main journa
Striking a Balance: Policy Considerations for Human Germline Modification
Striking a Balance: Policy Considerations for Human Germline Modificatio
Cosmic variance of the galaxy cluster weak lensing signal
Intrinsic variations of the projected density profiles of clusters of
galaxies at fixed mass are a source of uncertainty for cluster weak lensing. We
present a semi-analytical model to account for this effect, based on a
combination of variations in halo concentration, ellipticity and orientation,
and the presence of correlated haloes. We calibrate the parameters of our model
at the 10 per cent level to match the empirical cosmic variance of cluster
profiles at M_200m=10^14...10^15 h^-1 M_sol, z=0.25...0.5 in a cosmological
simulation. We show that weak lensing measurements of clusters significantly
underestimate mass uncertainties if intrinsic profile variations are ignored,
and that our model can be used to provide correct mass likelihoods. Effects on
the achievable accuracy of weak lensing cluster mass measurements are
particularly strong for the most massive clusters and deep observations (with
~20 per cent uncertainty from cosmic variance alone at M_200m=10^15 h^-1 M_sol
and z=0.25), but significant also under typical ground-based conditions. We
show that neglecting intrinsic profile variations leads to biases in the
mass-observable relation constrained with weak lensing, both for intrinsic
scatter and overall scale (the latter at the 15 per cent level). These biases
are in excess of the statistical errors of upcoming surveys and can be avoided
if the cosmic variance of cluster profiles is accounted for.Comment: 14 pages, 6 figures; submitted to MNRA
The role of epibenthic predators in structuring marine soft-bottom communities along an estuarine gradient
A unifying theory of community regulation in soft-bottom systems remains elusive, despite extensive field studies on factors controlling community structure. Here, I have (1) reviewed models of community regulation, (2) examined the role of predation in controlling benthic diversity along a salinity gradient, (3) examined effects of predation upon an abundant bivalve, Macoma balthica, and (4) revised a model of community regulation in an estuarine soft-bottom system. The Menge and Sutherland (MS) consumer stress model posits that consumers feed ineffectively in harsh environments, and the importance of physical disturbance, competition and predation varies with recruitment, environmental conditions, and trophic position. In this model, competition for resources depends directly upon the level of recruitment. I have revised the model to fit soft-bottom systems by changing the recruitment axis to a recruitment: resource ratio. Hence, the impact of a given level of recruitment depends upon resource availability. According to the MS model, predation is most important in determining community structure when environmental conditions are not severe. I investigated the applicability of the MS model in a soft-bottom estuarine community. I quantified predator abundance, prey abundance and diversity, and the differential effect of predation on species diversity and survival of an abundant prey species, Macoma balthica, along an estuarine gradient in two tributaries of Chesapeake Bay. Benthic diversity was lower in upriver high-stress habitats than downriver low-stress habitats, in agreement with predictions of the MS model. However, the following findings are inconsistent with model predictions: (1) predator abundance was greater upriver, (2) predation intensity and its impact on benthic diversity were greater upriver, and (3) predation-induced mortality of transplanted Macoma balthica clams, and natural mortality of clams were higher upriver. An alternative community regulation model applies to this system because higher predator abundance and predation intensity in higher environmental stress is contrary to the MS model predictions. Predators aggregated upriver where carbon production was increased, and prey were abundant. Hence, a more suitable model for this soft-bottom system is one that incorporates the effects of production and predation along with recruitment, competition and environmental stress
- …