58 research outputs found

    Ontologies, Mental Disorders and Prototypes

    Get PDF
    As it emerged from philosophical analyses and cognitive research, most concepts exhibit typicality effects, and resist to the efforts of defining them in terms of necessary and sufficient conditions. This holds also in the case of many medical concepts. This is a problem for the design of computer science ontologies, since knowledge representation formalisms commonly adopted in this field do not allow for the representation of concepts in terms of typical traits. However, the need of representing concepts in terms of typical traits concerns almost every domain of real world knowledge, including medical domains. In particular, in this article we take into account the domain of mental disorders, starting from the DSM-5 descriptions of some specific mental disorders. On this respect, we favor a hybrid approach to the representation of psychiatric concepts, in which ontology oriented formalisms are combined to a geometric representation of knowledge based on conceptual spaces

    Multivariate modeling to identify patterns in clinical data: the example of chest pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In chest pain, physicians are confronted with numerous interrelationships between symptoms and with evidence for or against classifying a patient into different diagnostic categories. The aim of our study was to find natural groups of patients on the basis of risk factors, history and clinical examination data which should then be validated with patients' final diagnoses.</p> <p>Methods</p> <p>We conducted a cross-sectional diagnostic study in 74 primary care practices to establish the validity of symptoms and findings for the diagnosis of coronary heart disease. A total of 1199 patients above age 35 presenting with chest pain were included in the study. General practitioners took a standardized history and performed a physical examination. They also recorded their preliminary diagnoses, investigations and management related to the patient's chest pain. We used multiple correspondence analysis (MCA) to examine associations on variable level, and multidimensional scaling (MDS), k-means and fuzzy cluster analyses to search for subgroups on patient level. We further used heatmaps to graphically illustrate the results.</p> <p>Results</p> <p>A multiple correspondence analysis supported our data collection strategy on variable level. Six factors emerged from this analysis: „chest wall syndrome“, „vital threat“, „stomach and bowel pain“, „angina pectoris“, „chest infection syndrome“, and „ self-limiting chest pain“. MDS, k-means and fuzzy cluster analysis on patient level were not able to find distinct groups. The resulting cluster solutions were not interpretable and had insufficient statistical quality criteria.</p> <p>Conclusions</p> <p>Chest pain is a heterogeneous clinical category with no coherent associations between signs and symptoms on patient level.</p

    Fuzzy obesity index (MAFOI) for obesity evaluation and bariatric surgery indication

    Get PDF
    Background: the Miyahira-Araujo Fuzzy Obesity Index (MAFOI) for being used as an alternative in bariatric surgery indication (BSI) is validated in this paper. the search for a more accurate method to evaluate obesity and to indicate a better treatment is important in the world health context. Body mass index (BMI) is considered the main criteria for obesity treatment and BSI. Nevertheless, the fat excess related to the percentage of Body Fat (%BF) is actually the principal harmful factor in obesity disease that is usually neglected. the aim of this research is to validate a previous fuzzy mechanism by associating BMI with %BF that yields the Miyahira-Araujo Fuzzy Obesity Index (MAFOI) for obesity evaluation, classification, analysis, treatment, as well for better indication of surgical treatment.Methods: Seventy-two patients were evaluated for both BMI and %BF. the BMI and %BF classes are aggregated yielding a new index (MAFOI). the input linguistic variables are the BMI and %BF, and the output linguistic variable is employed an obesity classification with entirely new types of obesity in the fuzzy context, being used for BSI, as well.Results: There is gradual and smooth obesity classification and BSI criteria when using the Miyahira-Araujo Fuzzy Obesity Index (MAFOI), mainly if compared to BMI or %BF alone for dealing with obesity assessment, analysis, and treatment.Conclusion: the resulting fuzzy decision support system (MAFOI) becomes a feasible alternative for obesity classification and bariatric surgery indication

    Fuzziness,Philosophy,and Medicine

    No full text

    A very brief history of soft computing: Fuzzy Sets, artificial Neural Networks and Evolutionary Computation

    No full text
    This paper gives a brief presentation of history of Soft Computing considered as a mix of three scientific disciplines that arose in the mid of the 20th century: Fuzzy Sets and Systems, Neural Networks, and Evolutionary Computation. The paper shows the genesis and the historical development of the three disciplines and also their meeting in a coalition in the 1990s

    Preface

    No full text

    Having the final say: Machine support of ethical decisions of doctors

    No full text
    Machines that support highly complex decisions of doctors have been a reality of r almost half a century. In the 1950s. computer-supported medical diag­ nostic systems started with "punched cru·ds in a shoe box". In the 1960s :md 1970s medicine waïżœ. to a cenain extent, transfo rmed into a quantitative science by inten­ sive i nt erdisc ip linary research coUaborations o f exp erts fi·om medicine. mathemat­ ics and electrical engineering; This was followed by a second shift in research on machine support of medical decisions from numerical probabilistic to knowledge basedapproaches. Solutions ofthe later form cameto be known as (medic;ll) expert systems, knowledge based systems research o‹· Artificial Intelligence in Medicine. With growi11g complexity of machines physician patient interaction can be supported in various ways. This includes not only d iag nos is and th erapy options but could also include ethical problems like end-of-life decisions. Here questions of shared responsibility need to be answered: should machine or human have the last say? This chapter explores the question of shared responsibility mainly in ethical decision making in medicine. After addressing the historical development of decision support systems in medicine the demands of users on such systems are analyzed. Then the special structure of ethical dilemmas is explored. Finally, this chapter discusses the question how decision suppo11 systems

    The Webbed Emergence of Fuzzy Sets and Computer Science Education from Electrical Engineering

    No full text
    Historically, Computer science emerged from electrical engineering and from mathematics in the 1960s. From the content of some unpublished documents and also some rather less-well-known papers by Lotfi A. Zadeh it is argued that the emergences of Computer science and Fuzzy Set Theory have been interlinked. Zadeh’s task as Chair of the Electrical Engineering Department in Berkeley in the 1960s, his activities in Education of Engineering and his creation of the theory of Fuzzy sets generated his view on the scientific discipline of Com- puter science as a fuzzy set. This view could establish a new approach to history and philosophy of science
    • 

    corecore