255 research outputs found

    Women in Law Enforcement: The Impacts and Obstacles They Face in a Hispanic- and Male-Dominated Culture

    Get PDF
    Despite a lack of female law enforcement representation in police departments across the country and especially in the Border Patrol, there have been minimal studies performed that focus on the obstacles women face in these professions. The purpose of this study was to attempt to understand the lived experiences of female law enforcement officers/border patrol agents in this male-dominated profession, but also adding the aspect of them working in a Hispanic-dominated culture. The findings revealed these women in law enforcement working in a Hispanic area face many of the same obstacles as women in other parts of the country - including sexual harassment, perceptions of women in this male-dominated field and family obligations. While not all obstacles mentioned could be linked with the Hispanic culture, there were certainly connections related to Machismo and how women are treated by the public and fellow officers in this culture. While women continue to integrate into various law enforcement agencies, the percentage of women in this field is relatively stagnant and has been for many years. These findings could be used to educate current and future law enforcement leaders as to the obstacles women face with hopes to make changes to the way women are viewed in the law enforcement profession and in a Machismo culture

    A Model for Enveloping Space Station Logistics Requirements

    Get PDF
    Since the inception of the Space Station customer Logistics study, it became apparent that a modeling process was needed to provide insight into the many sensitivities and relationships which exist among the numerous variables which impact Space Station Customer Accommodations and Logistics Support Requirements with regard to their associated design requirements. such a model would provide the necessary and timely support to the Space Station designers and planners during the program\u27s early development. This paper will address the current design and operations of the Space Station in particular the Manufacturing and Technology Laboratory (MTL) which is the primary focus of the study and the model. Typical experiments planned for the MTL will be addressed as well as their on-orbit operational and logistical requirements. A detailed description of the model developed under the study along with some of its many applications for scoping Space Station Logistics Requirements will be presented

    Technology Development Missions Concept Definition Study TDMX 2066 Large Inflatable/ Rigidized Structures

    Get PDF
    The advent of the Space Station will require the development and advancement of many new technologies. One of which is the development of Inflatable/ Rigidized Structures. This paper addresses the concept definition, feasibility and requirements for a Large Inflatable/Rigidized Hangar for Payload Servicing on the Space Station. Inflatable/Rigidized Structure Technology has existed for .many years, but applications of this technology to Space Based Elements has only begun during the past decade. Inflatable/Rigidized Structures offer a variety of benefits and applications to the Space Station, key of which is their low weight and volume requirements for transfer to the Station. A 60X40 foot foam hangar can be packaged and shipped in a specialized container approximately 46 m3 and will provide 3200 m3 of usable working/storage space. Previous studies have produced tremendous success in the area of design, fabrication and development of such Inflatable/Rigidized Structures as: a Spacelab transfer tunnel, module airlocks, platforms, large storage hangars, interconnect tunnels, and lunar habitation modules. This paper will address the technology issues/advancements which must be meet, the requirements for accommodations on the Space Station, such as crew and equipment requirements to assemble the hangar at the Station. Pre-launch ground requirements will also be addresses, which include new advanced packaging techniques for Rigidized structures. Typical Ground and On-orbit scenarios will be provided. Finally a preliminary evolutionary plan will be presented which indicates the major experiment development phases from ground based prototypes to full scale Stat-ion deployment

    Snow accumulation of a high alpine catchment derived from LiDAR measurements

    Get PDF
    The spatial distribution of snow accumulation substantially affects the seasonal course of water storage and runoff generation in high mountain catchments. Whereas the areal extent of snow cover can be recorded by satellite data, spatial distribution of snow depth and hence snow water equivalent (SWE) is difficult to measure on catchment scale. In this study we present the application of airborne LiDAR (Light Detecting And Ranging) data to extract snow depths and accumulation distribution in an alpine catchment. <br><br> Airborne LiDAR measurements were performed in a glacierized catchment in the Ötztal Alps at the beginning and the end of three accumulation seasons. The resulting digital elevation models (DEMs) were used to calculate surface elevation changes throughout the winter season. These surface elevation changes were primarily referred to as snow depths and are discussed concerning measured precipitation and the spatial characteristics of the accumulation distribution in glacierized and unglacierized areas. To determine the redistribution of catchment precipitation, snow depths were converted into SWE using a simple regression model. Snow accumulation gradients and snow redistribution were evaluated for 100 m elevation bands. <br><br> Mean surface elevation changes of the whole catchment ranges from 1.97 m to 2.65 m within the analyzed accumulation seasons. By analyzing the distribution of the snow depths, elevation dependent patterns were obtained as a function of the topography in terms of aspect and slope. The high resolution DEMs show clearly the higher variation of snow depths in rough unglacierized areas compared to snow depths on smooth glacier surfaces. Mean snow depths in glacierized areas are higher than in unglacierized areas. Maximum mean snow depths of 100 m elevation bands are found between 2900 m and 3000 m a.s.l. in unglacierized areas and between 2800 m and 2900 m a.s.l. in glacierized areas, respectively. Calculated accumulation gradients range from 8% to 13% per 100 m elevation band in the observed catchment. Elevation distribution of accumulation calculated by applying these seasonal gradients in comparison to elevation distribution of SWE obtained from airborne laser scanning (ALS) data show the total redistribution of snow from higher to lower elevation bands. <br><br> Revealing both, information about the spatial distribution of snow depths and hence the volume of the snow pack, ALS data are an important source for extensive snow accumulation measurements in high alpine catchments. These information about the spatial characteristics of snow distribution are crucial for calibrating hydrological models in order to realistically compute temporal runoff generation by snow melt

    Extrapontine myelinolysis presenting as acute parkinsonism

    Get PDF
    BACKGROUND: Extrapontine myelinolysis presenting with extra pyramidal features suggestive of parkinsonism may be a challenging clinical syndrome. Clinicians should maintain their vigilance while correcting electrolyte imbalances, especially with associated co-morbidity. CASE PRESENTATION: A 41-year-old woman presented with acute parkinsonism like features while on a holiday. This followed slow correction of hyponatraemia after repeated vomiting. MRI changes were suggestive of Extrapontine myelinolysis(EPM). This case is at variance with four previous cases reported in the medical literature in that the patient made a full clinical recovery and the MR changes resolved with symptomatic support alone. CONCLUSION: Extrapontine myelinolysis could make a complete recovery with symptomatic support alone. During hyponatraemia correction, rapid osmotic shifts of fluid that cause hypernatremia, causes myelinolysis rather than absolute serum sodium level. Even gradual correction of hyponatraemia can produce myelinolysis, especially with pre-existing malnourishment, alcoholism, drug misuse, Addison's disease and immuno-suppression. Pallidial sparing is typical of EPM in MRI scans

    Association between CYP2E1 polymorphisms and risk of differentiated thyroid carcinoma

    Get PDF
    Differentiated thyroid carcinoma (DTC) results from complex interactions between genetic and environmental factors. Known etiological factors include exposure to ionizing radiations, previous thyroid diseases, and hormone factors. It has been speculated that dietary acrylamide (AA) formed in diverse foods following the Maillard's reaction could be a contributing factor for DTC in humans. Upon absorption, AA is biotransformed mainly by cytochrome P450 2E1 (CYP2E1) to glycidamide (GA). Considering that polymorphisms within CYP2E1 were found associated with endogenous levels of AA-Valine and GA-Valine hemoglobin adducts in humans, we raised the hypothesis that specific CYP2E1 genotypes could be associated with the risk of DTC. Analysis of four haplotype tagging SNPs (ht-SNPs) within the locus in a discovery case-control study (N = 350/350) indicated an association between rs2480258 and DTC risk. This ht-SNP resides within a linkage disequilibrium block spanning intron VIII and the 3'-untranslated region. Extended analysis in a large replication set (2429 controls and 767 cases) confirmed the association, with odds ratios for GA and AA genotypes of 1.24 (95 % confidence interval (CI) 1.03-1.48) and 1.56 (95 % CI, 1.06-2.30), respectively. Functionally, the minor allele was associated with low levels of CYP2E1 mRNA and protein expression as well as lower enzymatic activity in a series of 149 human liver samples. Our data support the hypothesis that inter-individual differences in CYP2E1 activity could modulate the risk of developing DTC suggesting that the exposure to specific xenobiotics, such as AA, could play a role in this process

    Joint Endeavor Toward Sustainable Mountain Development: Research at the Institute for Interdisciplinary Mountain Research of the Austrian Academy of Sciences

    Get PDF
    The sustainable development of mountain regions requires inter-and transdisciplinary knowledge. The Institute for Interdisciplinary Mountain Research contributes to this global endeavor as part of the Austrian Academy of Sciences and as a member of international scientific networks, together with local partners and stakeholders. As a joint effort of individual researchers covering multiple fields, this article highlights our views on mountains as research objects, the phenomena we investigate as parts of entire mountain systems, and the synergies and differences of the disciplinary frames within which we work

    Dynamic phosphorylation of Histone Deacetylase 1 by Aurora kinases during mitosis regulates zebrafish embryos development

    Get PDF
    Histone deacetylases (HDACs) catalyze the removal of acetyl molecules from histone and nonhistone substrates playing important roles in chromatin remodeling and control of gene expression. Class I HDAC1 is a critical regulator of cell cycle progression, cellular proliferation and differentiation during development; it is also regulated by many post-translational modifications (PTMs). Herein we characterize a new mitosis-specific phosphorylation of HDAC1 driven by Aurora kinases A and B. We show that this phosphorylation affects HDAC1 enzymatic activity and it is critical for the maintenance of a proper proliferative and developmental plan in a complex organism. Notably, we find that Aurora-dependent phosphorylation of HDAC1 regulates histone acetylation by modulating the expression of genes directly involved in the developing zebrafish central nervous system. Our data represent a step towards the comprehension of HDAC1 regulation by its PTM code, with important implications in unravelling its roles both in physiology and pathology

    FLT3 mutations in canine acute lymphocytic leukemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>FMS-like tyrosine kinase 3 (FLT3) is a commonly mutated protein in a variety of human acute leukemias. Mutations leading to constitutively active FLT3, including internal tandem duplications of the juxtamembrane domain (ITD), result in continuous cellular proliferation, resistance to apoptotic cell death, and a poorer prognosis. A better understanding of the molecular consequences of FLT3 activation would allow improved therapeutic strategies in these patients. Canine lymphoproliferative diseases, including lymphoma and acute leukemias, share evolutionarily conserved chromosomal aberrations and exhibit conserved mutations within key oncogenes when compared to their human counterparts. A small percentage of canine acute lymphocytic leukemias (ALL) also exhibit <it>FLT3 </it>ITD mutations.</p> <p>Methods</p> <p>We molecularly characterized <it>FLT3 </it>mutations in two dogs and one cell line, by DNA sequencing, gene expression analysis via quantitative real-time PCR, and sensitivity to the FLT3 inhibitor lestaurtinib via <it>in vitro </it>proliferation assays. FLT 3 and downstream mediators of FLT3 activation were assessed by Western blotting.</p> <p>Results</p> <p>The canine B-cell leukemia cell line, GL-1, and neoplastic cells from 2/7 dogs diagnosed cytologically with ALL were found to have <it>FLT3 </it>ITD mutations and <it>FLT3 </it>mRNA up-regulation. Lestaurtinib, a small molecule FLT3 inhibitor, significantly inhibited the growth of GL-1 cells, while not affecting the growth of two other canine lymphoid cell lines without the <it>FLT3 </it>mutation. Finally, western blots were used to confirm the conserved downstream mediators of <it>FLT3 </it>activating mutations.</p> <p>Conclusions</p> <p>These results show that ALL and FLT3 biology is conserved between canine and human patients, supporting the notion that canine ALL, in conjunction with the GL-1 cell line, will be useful in the development of a relevant large animal model to aid in the study of human FLT3 mutant leukemias.</p
    corecore