14 research outputs found

    First report of Itersonilia perplexans

    No full text

    Characterization of the first two viruses described from wild populations of hammer orchids (Drakaea spp.) in Australia

    No full text
    Sequences representing the genomes of two distinct virus isolates infecting wild plants of two members of the genus Drakaea (hammer orchids) in Western Australia are described. The virus isolated from Drakaea livida has a bipartite genome of 4490 nt (RNA1) and 2905 nt (RNA2) that shares closest sequence and structural similarity to members of the genus Pecluvirus, family Virgaviridae, described from legumes in the Indian subcontinent and West Africa. However, it differs from pecluviruses by lacking a P39 protein on RNA2 and having a cysteine-rich protein gene located 3′ of the triple gene block protein genes. It is the first peclu-like virus to be described from Australia. The name Drakaea virus A is proposed (DVA; proposed member of the family Virgaviridae, genus unassigned). The second virus isolate was identified from Drakaea elastica, a species classed as endangered under conservation legislation. The genome sequence of this virus shares closest identity with isolates of Donkey orchid symptomless virus (DOSV; proposed member of the order Tymovirales, family and genus unassigned), a species described previously from wild Caladenia and Diuris orchids in the same region. These viruses are the first to be isolated from wild Drakaea populations and are proposed to have an ancient association with their orchid hosts

    Neutral atoms in ionic lattices: Excited states of KCl:Ag(0)

    Get PDF
    The optical-absorption spectrum of a cationic Ag0 atom in a KCl crystal has been studied theoretically by means of a series of cluster models of increasing size. Excitation energies have been determined by means of a multiconfigurational self-consistent field procedure followed by a second-order perturbation correlation treatment. Moreover results obtained within the density-functional framework are also reported. The calculations confirm the assignment of bands I and IV to transitions of the Ag-5s electron into delocalized states with mainly K-4s,4p character. Bands II and III have been assigned to internal transitions on the Ag atom, which correspond to the atomic Ag-4d to Ag-5s transition. We also determine the lowest charge transfer (CT) excitation energy and confirm the assignment of band VI to such a transition. The study of the variation of the CT excitation energy with the Ag-Cl distance R gives additional support to a large displacement of the Cl ions due to the presence of the Ag0 impurity. Moreover, from the present results, it is predicted that on passing to NaCl:Ag0 the CT onset would be out of the optical range while the 5s-5p transition would undergo a redshift of 0.3 eV. These conclusions, which underline the different character of involved orbitals, are consistent with experimental findings. The existence of a CT transition in the optical range for an atom inside an ionic host is explained by a simple model, which also accounts for the differences with the more common 3d systems. The present study sheds also some light on the R dependence of the s2-sp transitions due to s2 ions like Tl+

    Neutral atoms in ionic lattices: Stability and ground state properties of KCl:Ag(0)

    Get PDF
    The equilibrium geometry of Ag0 centers formed at cation sites in KCl has been investigated by means of total-energy calculations carried out on clusters of different sizes. Two distinct methods have been employed: First, an ab initio wave-function based method on embedded clusters and second, density-functional theory ~DFT! methods on clusters in vacuo involving up to 117 atoms. In the ab initio calculations the obtained equilibrium Ag0 -Cl2 distance Re is 3.70 Å, implying a large outward relaxation of 18%, along with 7% relaxation for the distance between Ag0 and the first K1 ions in ^100& directions. A very similar result is reached through DFT with a 39-atom cluster. Both approaches lead to a rather shallow minimum of the total-energy surface, the associated force constant of the A1g mode is several times smaller than that found for other impurities in halides. These conclusions are shown to be compatible with available experimental results. The shallow minimum is not clearly seen in DFT calculations with larger clusters. The unpaired electron density on silver and Cl ligands has been calculated as function of the metal-ligand distance and has been compared with values derived from electron-paramagnetic resonance data. The DFT calculations for all cluster sizes indicate that the experimental hyperfine and superhyperfine constants are compatible when Re is close to 3.70 Å. The important relation between the electronic stability of a neutral atom inside an ionic lattice and the local relaxation is established through a simple electrostatic model. As most remarkable features it is shown that ~i! the cationic Ag0 center is not likely to be formed inside AgCl, ~ii! in the Ag0 center encountered in SrCl2, the silver atom is probably located at an anion site, and ~iii! the properties of a center-like KCl:Ag0 would experience significant changes under hydrostatic pressures of the order of 6 GPa
    corecore