115 research outputs found

    Image-based evaluation of contraction–relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology

    Get PDF
    AbstractIn this study, we used high-speed video microscopy with motion vector analysis to investigate the contractile characteristics of hiPS-CM monolayer, in addition to further characterizing the motion with extracellular field potential (FP), traction force and the Ca2+ transient. Results of our traction force microscopy demonstrated that the force development of hiPS-CMs correlated well with the cellular deformation detected by the video microscopy with motion vector analysis. In the presence of verapamil and isoproterenol, contractile motion of hiPS-CMs showed alteration in accordance with the changes in fluorescence peak of the Ca2+ transient, i.e., upstroke, decay, amplitude and full-width at half-maximum. Simultaneously recorded hiPS-CM motion and FP showed that there was a linear correlation between changes in the motion and field potential duration in response to verapamil (30–150nM), isoproterenol (0.1–10μM) and E-4031 (10–50nM). In addition, tetrodotoxin (3–30μM)-induced delay of sodium current was corresponded with the delay of the contraction onset of hiPS-CMs. These results indicate that the electrophysiological and functional behaviors of hiPS-CMs are quantitatively reflected in the contractile motion detected by this image-based technique. In the presence of 100nM E-4031, the occurrence of early after-depolarization-like negative deflection in FP was also detected in the hiPS-CM motion as a characteristic two-step relaxation pattern. These findings offer insights into the interpretation of the motion kinetics of the hiPS-CMs, and are relevant for understanding electrical and mechanical relationship in hiPS-CMs

    BUROSUMAB IN TUMOR-INDUCED OSTEOMALACIA

    Get PDF
    Patients with tumor-induced osteomalacia (TIO), an acquired paraneoplastic condition characterized by osteomalacia due to hypophosphatemia, exhibit a similar clinical picture to those with X-linked hypophosphatemic rickets/osteomalacia (XLH). The human monoclonal anti-fibroblast growth factor 23 (FGF23) antibody burosumab (KRN23) increases serum phosphate and improves bone turnover, fracture healing, pain, and physical function in XLH patients by inhibiting circulating FGF23; thus, burosumab is expected to be an effective treatment for TIO. We report here an interim analysis of a multicenter, open-label, intraindividual dose-adjustment study of burosumab (0.3 to 2.0 mg/kg every 4 weeks) in Japanese and Korean TIO patients. The primary endpoint was the fasting serum phosphate level at each visit. Key secondary endpoints were changes over time in bone biomarkers, pharmacodynamic markers, bone histomorphometric parameters, motor function, and patient-reported outcomes. Safety was assessed based on treatment-emergent adverse events (TEAEs). Thirteen patients received burosumab treatment, of whom 4 underwent bone biopsy. The mean dose after week 112 was approximately 1.0 mg/kg. After the first burosumab administration, mean serum phosphate levels increased and remained above the lower limit of normal and in the normal range from weeks 14 to 112. Bone biomarkers initially increased, reaching maximum values at week 16 or 24, and then gradually decreased. After burosumab treatment, patients were able to walk further (evaluated by the 6-minute walk test), reported decreased pain levels, and showed a tendency toward healing of baseline fractures and pseudofractures. Two patients discontinued, one each due to disease progression and consent withdrawal. Burosumab was generally well tolerated, with no treatment-related TEAEs of grade ≥3 and no treatment-related serious AEs. In conclusion, the interim results of this first study of burosumab to treat TIO patients indicate that this drug has the potential to provide clinical benefit for patients with unresectable tumors. The full study results are eagerly anticipated

    Improvement of acquisition and analysis methods in multi-electrode array experiments with iPS cell-derived cardiomyocytes

    Get PDF
    AbstractIntroductionMulti-electrode array (MEA) systems and human induced pluripotent stem (iPS) cell-derived cardiomyocytes are frequently used to characterize the electrophysiological effects of drug candidates for the prediction of QT prolongation and proarrhythmic potential. However, the optimal experimental conditions for obtaining reliable experimental data, such as high-pass filter (HPF) frequency and cell plating density, remain to be determined.MethodsExtracellular field potentials (FPs) were recorded from iPS cell-derived cardiomyocyte sheets by using the MED64 and MEA2100 multi-electrode array systems. Effects of HPF frequency (0.1 or 1Hz) on FP duration (FPD) were assessed in the presence and absence of moxifloxacin, terfenadine, and aspirin. The influence of cell density on FP characteristics recorded through a 0.1-Hz HPF was examined. The relationship between FP and action potential (AP) was elucidated by simultaneous recording of FP and AP using a membrane potential dye.ResultsMany of the FP waveforms recorded through a 1-Hz HPF were markedly deformed and appeared differentiated compared with those recorded through a 0.1-Hz HPF. The concentration–response curves for FPD in the presence of terfenadine reached a steady state at concentrations of 0.1 and 0.3μM when a 0.1-Hz HPF was used. In contrast, FPD decreased at a concentration of 0.3μM with a characteristic bell-shaped concentration–response curve when a 1-Hz HPF was used. The amplitude of the first and second peaks in the FP waveform increased with increasing cell plating density. The second peak of the FP waveform roughly coincided with AP signal at 50% repolarization, and the negative deflection at the second peak of the FP waveform in the presence of E-4031 corresponded to early afterdepolarization and triggered activity.DiscussionFP can be used to assess the QT prolongation and proarrhythmic potential of drug candidates; however, experimental conditions such as HPF frequency are important for obtaining reliable data

    Plasma Thrombopoietin Levels are Unlikely to Account for the Platelet-sparing Effect of Paclitaxel in Lung Cancer Patients

    Get PDF
    Purpose: The present study was designed to determine whether the combination of carboplatin (CBDCA) with paclitaxel (PTX) spared CBDCA-induced thrombocytopenia by increased plasma thrombopoietin (TPO) levels. Methods: Patients with non-small-cell and small-cell lung cancer were consecutively assigned to CBDCA with PTX regimen (CBDCA/PTX) and CBDCA with irinotecan (CPT-11) regimen (CBDCA/CPT-11), respectively. Results: Ten patients were entered into either CBDCA/PTX (n=5) or CBDCA/CPT-11 (n=5). CBDCA/PTX showed a lesser reduction of platelet counts than CBDCA/CPT-11 (p<0.05), although more severe neutropenia was observed in CBDCA/PTX (p<0.01). The plasma TPO levels were inversely correlated with circulating platelet counts in CBDCA/PTX and CBDCA/CPT-11. However, the increased rate of plasma TPO levels in CBDCA/PTX was not significantly different from that in CBDCA/CPT-11. Conclusions: These findings suggest that the increased plasma TPO levels in CBDCA/PTX result secondarily from thrombocytopenia, and that circulating TPO is probably not involved in the platelet-sparing effect of PTX

    Gene Targeting and Subsequent Site-Specific Transgenesis at the beta-actin (ACTB) Locus in Common Marmoset Embryonic Stem Cells

    Get PDF
    Nonhuman primate embryonic stem (ES) cells have vast promise for preclinical studies. Genetic modification in nonhuman primate ES cells is an essential technique for maximizing the potential of these cells. The common marmoset (Callithrix jacchus), a nonhuman primate, is expected to be a useful transgenic model for preclinical studies. However, genetic modification in common marmoset ES (cmES) cells has not yet been adequately developed. To establish efficient and stable genetic modifications in cmES cells, we inserted the enhanced green fluorescent protein (EGFP) gene with heterotypic lox sites into the beta-actin (ACTB) locus of the cmES cells using gene targeting. The resulting knock-in ES cells expressed EGFP ubiquitously under the control of the endogenous ACTB promoter. Using inserted heterotypic lox sites, we demonstrated Cre recombinase-mediated cassette exchange (RMCE) and successfully established a monomeric red fluorescent protein (mRFP) knock-in cmES cell line. Further, a herpes simplex virus-thymidine kinase (HSV-tk) knock-in cmES cell line was established using RMCE. The growth of tumor cells originating from the cell line was significantly suppressed by the administration of ganciclovir. Therefore, the HSV-tk/ganciclovir system is promising as a safeguard for stem cell therapy. The stable and ubiquitous expression of EGFP before RMCE enables cell fate to be tracked when the cells are transplanted into an animal. Moreover, the creation of a transgene acceptor locus for site-specific transgenesis will be a powerful tool, similar to the ROSA26 locus in mice

    Electronic states and quantum transport in double-wall carbon nanotubes

    Full text link
    Electronic states and transport properties of double-wall carbon nanotubes without impurities are studied in a systematic manner. It is revealed that scattering in the bulk is negligible and the number of channels determines the average conductance. In the case of general incommensurate tubes, separation of degenerated energy levels due to intertube transfer is suppressed in the energy region higher than the Fermi energy but not in the energy region lower than that. Accordingly, in the former case, there are few effects of intertube transfer on the conductance, while in the latter case, separation of degenerated energy levels leads to large reduction of the conductance. It is also found that in some cases antiresonance with edge states in inner tubes causes an anomalous conductance quantization, G=e2/πG=e^2/\pi\hbar, near the Fermi energy.Comment: 24 pages, 13 figures, to be published in Physical Review

    Effect of dietary protamine on lipid metabolism in rats

    Get PDF
    Protamine has been widely used as a pharmaceutical product and natural food preservative. However, few studies have been conducted to assess the beneficial function of dietary protamine. This study examined the effects of dietary salmon protamine on serum and liver lipid levels and the expression levels of genes encoding proteins involved in lipid homeostasis in the liver of rats. Groups of male Wistar rats were fed AIN93G diet containing 2% or 5% protamine. After 4 weeks of feeding these diets, markedly decreased serum and liver cholesterol (CHOL) and triacylglycerol levels were noted. Increased activity of liver carnitine palmitoyltransferase-2 and acyl-CoA oxidase, which are key enzymes of fatty acid β-oxidation in the mitochondria and peroxisomes, was found in rats fed on protamine. Furthermore, rats fed protamine showed enhanced fecal excretion of CHOL and bile acid and increased liver mRNA expression levels of ATP-binding cassette (ABC) G5 and ABCG8, which form heterodimers and play a major role in the secretion of CHOL into bile. The decrease in triacylglycerol levels in protamine-fed rats was due to the enhancement of liver β-oxidation. Furthermore, rats fed protamine exhibited decreased CHOL levels through the suppression of CHOL and bile acid absorption and the enhancement of CHOL secretion into bile. These results suggest that dietary protamine has beneficial effects that may aid in the prevention of lifestyle-related diseases such as hyperlipidemia and atherosclerosis

    Coincidence analysis to search for inspiraling compact binaries using TAMA300 and LISM data

    Get PDF
    Japanese laser interferometric gravitational wave detectors, TAMA300 and LISM, performed a coincident observation during 2001. We perform a coincidence analysis to search for inspiraling compact binaries. The length of data used for the coincidence analysis is 275 hours when both TAMA300 and LISM detectors are operated simultaneously. TAMA300 and LISM data are analyzed by matched filtering, and candidates for gravitational wave events are obtained. If there is a true gravitational wave signal, it should appear in both data of detectors with consistent waveforms characterized by masses of stars, amplitude of the signal, the coalescence time and so on. We introduce a set of coincidence conditions of the parameters, and search for coincident events. This procedure reduces the number of fake events considerably, by a factor 104\sim 10^{-4} compared with the number of fake events in single detector analysis. We find that the number of events after imposing the coincidence conditions is consistent with the number of accidental coincidences produced purely by noise. We thus find no evidence of gravitational wave signals. We obtain an upper limit of 0.046 /hours (CL =90= 90 %) to the Galactic event rate within 1kpc from the Earth. The method used in this paper can be applied straightforwardly to the case of coincidence observations with more than two detectors with arbitrary arm directions.Comment: 28 pages, 17 figures, Replaced with the version to be published in Physical Review

    Results of the search for inspiraling compact star binaries from TAMA300's observation in 2000-2004

    Get PDF
    We analyze the data of TAMA300 detector to search for gravitational waves from inspiraling compact star binaries with masses of the component stars in the range 1-3Msolar. In this analysis, 2705 hours of data, taken during the years 2000-2004, are used for the event search. We combine the results of different observation runs, and obtained a single upper limit on the rate of the coalescence of compact binaries in our Galaxy of 20 per year at a 90% confidence level. In this upper limit, the effect of various systematic errors such like the uncertainty of the background estimation and the calibration of the detector's sensitivity are included.Comment: 8 pages, 4 Postscript figures, uses revtex4.sty The author list was correcte

    The Japanese space gravitational wave antenna; DECIGO

    Get PDF
    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry– Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre- DECIGO first and finally DECIGO in 2024
    corecore