114 research outputs found

    Fermi surface and antiferromagnetism in the Kondo lattice: an asymptotically exact solution in d>1 Dimensions

    Full text link
    Interest in the heavy fermion metals has motivated us to examine the quantum phases and their Fermi surfaces within the Kondo lattice model. We demonstrate that the model is soluble asymptotically exactly in any dimension d>1, when the Kondo coupling is small compared with the RKKY interaction and in the presence of antiferromagnetic ordering. We show that the Kondo coupling is exactly marginal in the renormalization group sense, establishing the stability of an ordered phase with a small Fermi surface, AFs. Our results have implications for the global phase diagram of the heavy fermion metals, suggesting a Lifshitz transition inside the antiferromagnetic region and providing a new perspective for a Kondo-destroying antiferromagnetic quantum critical point.Comment: 4 pages, 4 figures; (v2) corrected typos and added reference/acknowledgment; (v3) version as published in Physical Review Letters (July, 2007

    Pretreatment serum FGF-23 levels predict the efficacy of calcitriol therapy in dialysis patients

    Get PDF
    Pretreatment serum FGF-23 levels predict the efficacy of calcitriol therapy in dialysis patients.BackgroundThe predictor for the result of calcitriol therapy would be useful in the clinical practice of secondary hyperparathyroidism. Fibroblast growth factor-23 (FGF-23) is a newly found circulating phosphaturic factor. Its circulating level is elevated in uremia.MethodsDialysis patients with plasma intact parathyroid hormone (iPTH) levels greater than 300 pg/mL were included in the study. Calcitriol was intravenously injected three times a week. The patients whose plasma iPTH levels dropped below 300 pg/mL within 24 weeks were defined as those who had been successfully treated. A sandwich enzyme-linked immunosorbent assay (ELISA) system that detects human FGF-23 was applied.ResultsSixty-two patients were analyzed. The pretreatment FGF-23 levels were related to the iPTH levels, calcium × phosphate product levels, and history of active vitamin D therapy. The pretreatment FGF-23, iPTH, and calcium levels were lower in the patients who would be successfully treated with calcitriol. A logistic regression study revealed that the pretreatment iPTH and FGF-23 levels significantly affected the therapy results. Analyses using a receiver-operated curve revealed that FGF-23 was the best screening test for identifying patients with future refractory response to calcitriol therapy. The treatment would be successful in 88.2% of those with FGF-23 ≀9860 ng/L and iPTH ≀591 pg/mL, while it would be successful in only 4.2% of those with FGF-23 >9860 ng/L and iPTH >591 pg/mL.ConclusionPretreatment serum FGF-23 levels were a good indicator in predicting the response to calcitriol therapy. The measurement of serum FGF-23 levels, especially in combination with iPTH levels, is a promising laboratory examination for the clinical practice of secondary hyperparathyroidism

    Optimal Location of Two Laser-interferometric Detectors for Gravitational Wave Backgrounds at 100 MHz

    Full text link
    Recently, observational searches for gravitational wave background (GWB) have been developed and given constraints on the energy density of GWB in a broad range of frequencies. These constraints have already resulted in the rejection of some theoretical models of relatively large GWB spectra. However, at 100 MHz, there is no strict upper limit from direct observation, though an indirect limit exists due to He4 abundance due to big-bang nucleosynthesis. In our previous paper, we investigated the detector designs that can effectively respond to GW at high frequencies, where the wavelength of GW is comparable to the size of a detector, and found that the configuration, a so-called synchronous-recycling interferometer is best at these sensitivity. In this paper, we investigated the optimal location of two synchronous-recycling interferometers and derived their cross-correlation sensitivity to GWB. We found that the sensitivity is nearly optimized and hardly changed if two coaligned detectors are located within a range 0.2 m, and that the sensitivity achievable in an experiment is far below compared with the constraint previously obtained in experiments.Comment: 17 pages, 6 figure

    Global Phase Diagram of the Kondo Lattice: From Heavy Fermion Metals to Kondo Insulators

    Full text link
    We discuss the general theoretical arguments advanced earlier for the T=0 global phase diagram of antiferromagnetic Kondo lattice systems, distinguishing between the established and the conjectured. In addition to the well-known phase of a paramagnetic metal with a "large" Fermi surface (P_L), there is also an antiferromagnetic phase with a "small" Fermi surface (AF_S). We provide the details of the derivation of a quantum non-linear sigma-model (QNLsM) representation of the Kondo lattice Hamiltonian, which leads to an effective field theory containing both low-energy fermions in the vicinity of a Fermi surface and low-energy bosons near zero momentum. An asymptotically exact analysis of this effective field theory is made possible through the development of a renormalization group procedure for mixed fermion-boson systems. Considerations on how to connect the AF_S and P_L phases lead to a global phase diagram, which not only puts into perspective the theory of local quantum criticality for antiferromagnetic heavy fermion metals, but also provides the basis to understand the surprising recent experiments in chemically-doped as well as pressurized YbRh2Si2. We point out that the AF_S phase still occurs for the case of an equal number of spin-1/2 local moments and conduction electrons. This observation raises the prospect for a global phase diagram of heavy fermion systems in the Kondo-insulator regime. Finally, we discuss the connection between the Kondo breakdown physics discussed here for the Kondo lattice systems and the non-Fermi liquid behavior recently studied from a holographic perspective.Comment: (v3) leftover typos corrected. (v2) Published version. 32 pages, 4 figures. Section 7, on the connection between the Kondo lattice systems and the holographic models of non-Fermi liquid, is expanded. (v1) special issue of JLTP on quantum criticalit

    Interacting Particles on the Line and Dunkl Intertwining Operator of Type A: Application to the Freezing Regime

    Full text link
    We consider a one-dimensional system of Brownian particles that repel each other through a logarithmic potential. We study two formulations for the system and the relation between them. The first, Dyson's Brownian motion model, has an interaction coupling constant determined by the parameter beta > 0. When beta = 1,2 and 4, this model can be regarded as a stochastic realization of the eigenvalue statistics of Gaussian random matrices. The second system comes from Dunkl processes, which are defined using differential-difference operators (Dunkl operators) associated with finite abstract vector sets called root systems. When the type-A root system is specified, Dunkl processes constitute a one-parameter system similar to Dyson's model, with the difference that its particles interchange positions spontaneously. We prove that the type-A Dunkl processes with parameter k > 0 starting from any symmetric initial configuration are equivalent to Dyson's model with the parameter beta = 2k. We focus on the intertwining operators, since they play a central role in the mathematical theory of Dunkl operators, but their general closed form is not yet known. Using the equivalence between symmetric Dunkl processes and Dyson's model, we extract the effect of the intertwining operator of type A on symmetric polynomials from these processes' transition probability densities. In the strong coupling limit, the intertwining operator maps all symmetric polynomials onto a function of the sum of their variables. In this limit, Dyson's model freezes, and it becomes a deterministic process with a final configuration proportional to the roots of the Hermite polynomials multiplied by the square root of the process time, while being independent of the initial configuration.Comment: LaTeX, 30 pages, 1 figure, 1 table. Corrected for submission to Journal of Physics

    Temperature dependence of local states due to S=1/2 impurities and their correlation in a S=1 Heisenberg chain

    Full text link
    We study the temperature dependence of the low temperature spin configurations, investigating the magnetization profile of the local states due to the impurities and the two point correlation function centered in one of the impurities. This correlation is found to be weak against temperature effects although the magnetization profile in the triplet state is visible up to higher temperatures. Here we introduce a loop cluster quantum Monte-Carlo method with a fixed magnetization Mz in order to study the correlations in the ground state of a given value of Mz. From the population distribution of magnetization, the very small energy gap between the quasi degenerate states due to the impurities is obtained.Comment: 13 pages, 16 figures. Corrected version due to inverted picture 3a and 3b. RevTex. Submitted to Phys. Rev.

    Quantum state preparation and macroscopic entanglement in gravitational-wave detectors

    Full text link
    Long-baseline laser-interferometer gravitational-wave detectors are operating at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band. Such a low classical noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of 200. This result, along with the prospect for further improvements, heralds the new possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using gravitational-wave detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the classical noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum state preparation, and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses, and the performance of the planned Advanced LIGO interferometers in quantum-state preparation

    Upper limits on the strength of periodic gravitational waves from PSR J1939+2134

    Get PDF
    The first science run of the LIGO and GEO gravitational wave detectors presented the opportunity to test methods of searching for gravitational waves from known pulsars. Here we present new direct upper limits on the strength of waves from the pulsar PSR J1939+2134 using two independent analysis methods, one in the frequency domain using frequentist statistics and one in the time domain using Bayesian inference. Both methods show that the strain amplitude at Earth from this pulsar is less than a few times 10−2210^{-22}.Comment: 7 pages, 1 figure, to appear in the Proceedings of the 5th Edoardo Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July 200

    Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers

    Get PDF
    We study frequency dependent (FD) input-output schemes for signal-recycling interferometers, the baseline design of Advanced LIGO and the current configuration of GEO 600. Complementary to a recent proposal by Harms et al. to use FD input squeezing and ordinary homodyne detection, we explore a scheme which uses ordinary squeezed vacuum, but FD readout. Both schemes, which are sub-optimal among all possible input-output schemes, provide a global noise suppression by the power squeeze factor, while being realizable by using detuned Fabry-Perot cavities as input/output filters. At high frequencies, the two schemes are shown to be equivalent, while at low frequencies our scheme gives better performance than that of Harms et al., and is nearly fully optimal. We then study the sensitivity improvement achievable by these schemes in Advanced LIGO era (with 30-m filter cavities and current estimates of filter-mirror losses and thermal noise), for neutron star binary inspirals, and for narrowband GW sources such as low-mass X-ray binaries and known radio pulsars. Optical losses are shown to be a major obstacle for the actual implementation of these techniques in Advanced LIGO. On time scales of third-generation interferometers, like EURO/LIGO-III (~2012), with kilometer-scale filter cavities, a signal-recycling interferometer with the FD readout scheme explored in this paper can have performances comparable to existing proposals. [abridged]Comment: Figs. 9 and 12 corrected; Appendix added for narrowband data analysi

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×10−5\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure
    • 

    corecore