241 research outputs found
Effect of pepper and salt blends on microbial quality of quanta: Ethiopian dried red meat
This study was conducted to assess the effect of spice blends varying in salt and pepper concentrations on the microbial quality of Quanta: Ethiopian dried red meat. The experiment had seven treatments: 25% spices, 25% salt, and 50% pepper (T1); 25% spices, 20% salt, and 55% pepper (T2); 25% spices, 15% salt, and 60% pepper (T3); 25% spices, 10% salt, and 65% pepper (T4); 25% spices, 5% salt, and 70% pepper (T5); 100% spices (without salt and pepper), a positive control (T6); a negative control without any added ingredient (T7). Microbiological analyses were performed initially on the raw sliced meat and spice blends, and after application of the treatments on the 10th and 20th days of drying. High initial loads of total bacteria (APC) and Enterobacteriaceae (EC) were observed in the raw meat samples and spice blends and increased over the drying periods (10 and 20 days) in all treatments. No significant difference (p>0.05) was observed among the treatments (T1-T7) for APC and EC at a given drying period and between the drying periods. Salmonella spp. was not detected in any of the seven treatments either on the 10th and 20th days of drying. However, Escherichia coli was detected in six (T1-T6) of the dry meat samples except in T7 both on the 10th and 20th days of drying suggesting that the spice blends served as a source of contamination of the dried meat samples with E. coli. However, the spice blends used in combination with drying were effective in inhibiting the growth of Salmonella species in the dry meat samples. Spices as well as the raw meat used for Quanta preparation should be produced and handled under hygienic conditions to minimize the microorganisms that they harbor
Stabilization of 2D Navier-Stokes equations by means of actuators with locally supported vorticity
Exponential stabilization to time-dependent trajectories for the
incompressible Navier-Stokes equations is achieved with explicit feedback
controls. The fluid is contained in two-dimensional spatial domains and the
control force is, at each time instant, a linear combination of a finite number
of given actuators. Each actuator has its vorticity supported in a small
subdomain. The velocity field is subject to Lions boundary conditions.
Simulations are presented showing the stabilizing performance of the proposed
feedback. The results also apply to a class of observer design problems.Comment: 9 figure
Impact of small-scale irrigation schemes on household income and the likelihood of poverty in the Lake Tana basin of Ethiopia
This study uses Tobit and Logit models to examine the impacts of selected small-scale irrigation schemes in the Lake Tana basin of Ethiopia on household income and the likelihood of poverty, respectively. Data for these analyses were collected from a sample of 180 households. Households using any of the four irrigation systems had statistically significantly higher mean total gross household income than households not using irrigation. The marginal impact of small-scale irrigation on gross household income indicated that each small scale-irrigation user increased mean annual household income by ETB 3353 per year, a 27% increase over income for non-irrigating households. A Logit regression model indicated that access to irrigation significantly reduced the odds that a household would be in the lowest quartile of household income, the poverty threshold used in this study. Households using concrete canal river diversion had higher mean cropping income per household than those using other irrigation types. Key challenges to further enhancing the benefits of irrigation in the region include water seepage, equity of water distribution, availability of irrigation equipment, marketing of irrigated crops and crop diseases facilitated by irrigation practices
Evaluation of CFSR, TMPA 3B42 and ground-based rainfall data as input for hydrological models, in data-scarce regions: The upper Blue Nile Basin, Ethiopia
Accurate prediction of hydrological models requires accurate spatial and temporal distribution of rainfall. In developing countries, the network of observation stations for rainfall is sparse and unevenly distributed. Satellite-based products have the potential to overcome this shortcoming. The objective of this study is to compare the advantages and the limitation of commonly used high-resolution satellite rainfall products (Climate Forecast System Reanalysis (CFSR) and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 version 7) as input to hydrological models as compared to sparsely and densely populated network of rain gauges. We used two (semi-distributed) hydrological models that performed well in the Ethiopian highlands: Hydrologiska Byråns Vattenbalansavdelning (HBV) and Parameter Efficient Distributed (PED). The rainfall products were tested in two watersheds: Gilgel Abay with a relatively dense network of rain gauge stations and Main Beles with a relatively scarce network, both are located in the Upper Blue Nile Basin. The results indicated that TMPA 3B42 was not be able to capture the gauged rainfall temporal variation in both watersheds and was not tested further. CFSR over predicted the rainfall pattern slightly. Both the gauged and the CFSR reanalysis data were able to reproduce the streamflow well for both models and both watershed when calibrated separately to the discharge data. Using the calibrated model parameters of gauged rainfall dataset together with the CFSR rainfall, the stream discharge for the Gilgel Abay was reproduced well but the discharge of the Main Beles was captured poorly partly because of the poor accuracy of the gauged rainfall dataset with none of the rainfall stations located inside the watershed. HBV model performed slightly better than the PED model, but the parameter values of the PED could be identified with the features of the landscape
Hydrological Foundation as a Basis for a Holistic Environmental Flow Assessment of Tropical Highland Rivers in Ethiopia
The sustainable development of water resources includes retaining some amount of the natural flow regime in water bodies to protect and maintain aquatic ecosystem health and the human livelihoods and wellbeing dependent upon them. Although assessment of environmental flows is now occurring globally, limited studies have been carried out in the Ethiopian highlands, especially studies to understand flow-ecological response relationships. This paper establishes a hydrological foundation of Gumara River from an ecological perspective. The data analysis followed three steps: first, determination of the current flow regime flow indices and ecologically relevant flow regime; second, naturalization of the current flow regime looking at how flow regime is changing; and, finally, an initial exploration of flow linkages with ecological processes. Flow data of Gumara River from 1973 to 2018 are used for the analysis. Monthly low flow occurred from December to June; the lowest being in March, with a median flow of 4.0 m(3) s(-1). Monthly high flow occurred from July to November; the highest being in August, with a median flow of 236 m(3) s(-1). 1-Day low flows decreased from 1.55 m(3) s(-1) in 1973 to 0.16 m(3) s(-1) in 2018, and 90-Day (seasonal) low flow decreased from 4.9 m(3) s(-1) in 1973 to 2.04 m(3) s(-1) in 2018. The Mann-Kendall trend test indicated that the decrease in low flow was significant for both durations at alpha = 0.05. A similar trend is indicated for both durations of high flow. The decrease in both low flows and high flows is attributed to the expansion of pump irrigation by 29 km(2) and expansion of plantations, which resulted in an increase of NDVI from 0.25 in 2000 to 0.29 in 2019. In addition, an analysis of environmental flow components revealed that only four "large floods" appeared in the last 46 years; no "large flood" occurred after 1988. Lacking "large floods" which inundate floodplain wetlands has resulted in early disconnection of floodplain wetlands from the river and the lake; which has impacts on breeding and nursery habitat shrinkage for migratory fish species in Lake Tana. On the other hand, the extreme decrease in "low flow" components has impacts on pin smaller pools. These results serve as the hydrological foundation for continued studies in the Gumara catchment, with the eventual goal of quantifying environmental flow requirements.redators, reducing their mobility and ability to access prey concentrate
Study Of Mechanical Alloying Of Sm And Fe
Mechanical alloying of Sm and Fe with the composition of SmFe3 was studied using x-ray-diffraction (XRD), Mossbauer, and magnetization measurements. Data taken as a function of milling time for up to 20 h show significant changes occurring during ball milling. The XRD studies show that the initial crystalline Bragg reflections changed to a broad maximum, which is attributed to the formation of an amorphous phase. The initial six-line pattern in the Mossbauer spectrum, characteristic of magnetic ordering, changed to a broad singlet, characteristic of a nonmagnetic material. Magnetization measurements revealed that the coercive field was at its maximum after 5 h of milling and decreased sharply as the milling time increased. The remanent magnetization was at its maximum between 5 and 10 h of milling. The final product of the ball milling, which exhibited the characteristics of an amorphous paramagnetic material in its XRD and Mossbauer spectrum, was studied after heat treatment. The XRD and the Mossbauer spectra of the heat treated alloy show that substantial changes occurred during heat treatment in that sharp Bragg reflections, characteristic of crystalline materials, reappear and the alloy changed from a paramagnetic to a ferromagnetic state. (C) 1997 American Institute of Physics
Deep Tillage Improves Degraded Soils in the (Sub) Humid Ethiopian Highlands
Intensification of rainfed agriculture in the Ethiopian highlands has resulted in soil degradation and hardpan formation, which has reduced rooting depth, decreased deep percolation, and increased direct runoff and sediment transport. The main objective of this study was to assess the potential impact of subsoiling on surface runoff, sediment loss, soil water content, infiltration rate, and maize yield. Three tillage treatments were replicated at five locations: (i) no tillage (zero tillage), (ii) conventional tillage (ox-driven Maresha plow, up to a depth of 15 cm), and (iii) manual deep ripping of the soil’s restrictive layers down to a depth of 60 cm (deep till). Results show that the posttreatment bulk density and penetration resistance of deep tillage was significantly less than in the traditional tillage and zero-tillage systems. In addition, the posttreatment infiltration rate for deep tillage was significantly greater, which resulted in significantly smaller runoff and sedimentation rates compared to conventional tillage and zero tillage. Maize yields were improved by 6% under deep tillage compared to conventional tillage and by 29% compared to no tillage. Overall, our findings show that deep tillage can be effective in overcoming some of the detrimental effects of hardpans in degraded soils
Arresting gully formation in the Ethiopian highlands
Over the past five decades, gullying has been widespread and has become more severe in the Ethiopian highlands. Only in very few cases, rehabilitation of gullies has been successful in Ethiopia due to the high costs. The objective of this paper is to introduce cost effective measures to arrest gully formation. The research was conducted in the Debre-Mewi watershed located at 30 km south of Bahir Dar, Ethiopia. Gullying started in the 1980s following the clearance of indigenous vegetation and intensive agricultural cultivation, leading to an increase of surface and subsurface runoff from the hillside to the valley bottoms. Gully erosion rates were 10–20 times the measured upland soil losses. Water levels, measured with piezometers, showed that in the actively eroding sections, the water table was in general above the gully bottom and below it in the stabilized sections. In order to develop effective gully stabilizing measures, we tested and then applied the BSTEM and CONCEPT models for their applicability for Ethiopian conditions where active gully formation has been occurring. We found that the model predicted the location of slips and slumps well with the observed groundwater depth and vegetation characteristics. The validated models indicated that any gully rehabilitation project should first stabilize the head cuts. This can be achieved by regrading these head cuts to slope of 40 degrees and armoring it with rock. Head cuts will otherwise move uphill in time and destroy any improvements. To stabilize side walls in areas with seeps, grass will be effective in shallow gullies, while deeper gullies require reshaping of the gullies walls, then planting the gully with grasses, eucalyptus or fruit trees that can be used for income generation. Only then there is an incentive for local farmers to maintain the structures
- …