12,316 research outputs found
Nonparametric regression penalizing deviations from additivity
Due to the curse of dimensionality, estimation in a multidimensional
nonparametric regression model is in general not feasible. Hence, additional
restrictions are introduced, and the additive model takes a prominent place.
The restrictions imposed can lead to serious bias. Here, a new estimator is
proposed which allows penalizing the nonadditive part of a regression function.
This offers a smooth choice between the full and the additive model. As a
byproduct, this penalty leads to a regularization in sparse regions. If the
additive model does not hold, a small penalty introduces an additional bias
compared to the full model which is compensated by the reduced bias due to
using smaller bandwidths. For increasing penalties, this estimator converges to
the additive smooth backfitting estimator of Mammen, Linton and Nielsen [Ann.
Statist. 27 (1999) 1443-1490]. The structure of the estimator is investigated
and two algorithms are provided. A proposal for selection of tuning parameters
is made and the respective properties are studied. Finally, a finite sample
evaluation is performed for simulated and ozone data.Comment: Published at http://dx.doi.org/10.1214/009053604000001246 in the
Annals of Statistics (http://www.imstat.org/aos/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Measurement of Gravitomagnetic and Acceleration Fields Around Rotating Superconductors
It is well known that a rotating superconductor produces a magnetic field
proportional to its angular velocity. The authors conjectured earlier, that in
addition to this so-called London moment, also a large gravitomagnetic field
should appear to explain an apparent mass increase of Niobium Cooper-pairs. A
similar field is predicted from Einstein's general relativity theory and the
presently observed amount of dark energy in the universe. An experimental
facility was designed and built to measure small acceleration fields as well as
gravitomagnetic fields in the vicinity of a fast rotating and accelerating
superconductor in order to detect this so-called gravitomagnetic London moment.
This paper summarizes the efforts and results that have been obtained so far.
Measurements with Niobium superconductors indeed show first signs which appear
to be within a factor of 2 of our theoretical prediction. Possible error
sources as well as the experimental difficulties are reviewed and discussed. If
the gravitomagnetic London moment indeed exists, acceleration fields could be
produced in a laboratory environment.Comment: To appear in the proceedings of the STAIF-2007 conference published
by AI
Investigation of a hopping transporter concept for lunar exploration
Performance and dynamic characteristics determined for hopping transporter for lunar exploratio
Tubular structures of GaS
In this Brief Report we demonstrate, using density-functional tight-binding theory, that gallium sulfide (GaS) tubular nanostructures are stable and energetically viable. The GaS-based nanotubes have a semiconducting direct gap which grows towards the value of two-dimensional hexagonal GaS sheet and is in contrast to carbon nanotubes largely independent of chirality. We further report on the mechanical properties of the GaS-based nanotubes
Hydrodynamic lift on bound vesicles
Bound vesicles subject to lateral forces such as arising from shear flow are
investigated theoretically by combining a lubrication analysis of the bound
part with a scaling approach to the global motion. A minor inclination of the
bound part leads to significant lift due to the additive effects of lateral and
tank-treading motions. With increasing shear rate, the vesicle unbinds from the
substrate at a critical value. Estimates are in agreement with recent
experimental data.Comment: 9 pages, one figur
Gravity-Induced Shape Transformations of Vesicles
We theoretically study the behavior of vesicles filled with a liquid of
higher density than the surrounding medium, a technique frequently used in
experiments. In the presence of gravity, these vesicles sink to the bottom of
the container, and eventually adhere even on non - attractive substrates. The
strong size-dependence of the gravitational energy makes large parts of the
phase diagram accessible to experiments even for small density differences. For
relatively large volume, non-axisymmetric bound shapes are explicitly
calculated and shown to be stable. Osmotic deflation of such a vesicle leads
back to axisymmetric shapes, and, finally, to a collapsed state of the vesicle.Comment: 11 pages, RevTeX, 3 Postscript figures uuencode
Can the Tajmar effect be explained using a modification of inertia?
The Tajmar effect is an unexplained acceleration observed by accelerometers
and laser gyroscopes close to rotating supercooled rings. The observed ratio
between the gyroscope and ring accelerations was 3+/-1.2x10^-8. Here, a new
model for inertia which has been tested quite successfully on the Pioneer and
flyby anomalies is applied to this problem. The model assumes that the inertia
of the gyroscope is caused by Unruh radiation that appears as the ring and the
fixed stars accelerate relative to it, and that this radiation is subject to a
Hubble-scale Casimir effect. The model predicts that the sudden acceleration of
the nearby ring causes a slight increase in the inertial mass of the gyroscope,
and, to conserve momentum in the reference frame of the spinning Earth, the
gyroscope rotates clockwise with an acceleration ratio of 1.8+/-0.25x10^-8 in
agreement with the observed ratio. However, this model does not explain the
parity violation seen in some of the gyroscope data. To test these ideas the
Tajmar experiment (setup B) could be exactly reproduced in the southern
hemisphere, since the model predicts that the anomalous acceleration should
then be anticlockwise.Comment: 9 pages, 1 figure. Accepted by EPL on the 4th December, 200
Ab initio simulations of liquid systems: Concentration dependence of the electric conductivity of NaSn alloys
Liquid NaSn alloys in five different compositions (20, 40, 50, 57 and 80%
sodium) are studied using density functional calculations combined with
molecular dynamics(Car-Parrinello method). The frequency-dependent electric
conductivities for the systems are calculated by means of the Kubo-Greenwood
formula.
The extrapolated DC conductivities are in good agreement with the
experimental data and reproduce the strong variation with the concentration.
The maximum of conductivity is obtained, in agreement with experiment, near the
equimolar composition.
The strong variation of conductivity, ranging from almost semiconducting up
to metallic behaviour, can be understood by an analysis of the
densities-of-states.Comment: LaTex 6 pages and 2 figures, to appear in J.Phys. Cond. Ma
- …