18 research outputs found

    A Taxonomy of Dynamic Changes Affecting Confidentiality

    Get PDF
    Industry 4.0 facilitates dynamic production processes for highly tailored individual products that require intense cooperation between different organisations. The enabler of such cooperation are cyber-physical systems (CPSs). A set of policies also considering dynamic changes of a request context during runtime has to protect the confidentiality of involved systems. Analysing policy effectiveness already during design time can avoid costly confidentiality flaws. However, the changes that can be evaluated during design time are not clear. Therefore, we identified typical dynamic changes from use cases we gathered with two industrial partners and categorized them accordingly

    High‐Throughput Synthesis and Machine Learning Assisted Design of Photodegradable Hydrogels

    Get PDF
    Due to the large chemical space, the design of functional and responsive soft materials poses many challenges but also offers a wide range of opportunities in terms of the scope of possible properties. Herein, an experimental workflow for miniaturized combinatorial high-throughput screening of functional hydrogel libraries is reported. The data created from the analysis of the photodegradation process of more than 900 different types of hydrogel pads are used to train a machine learning model for automated decision making. Through iterative model optimization based on Bayesian optimization, a substantial improvement in response properties is achieved and thus expanded the scope of material properties obtainable within the chemical space of hydrogels in the study. It is therefore demonstrated that the potential of combining miniaturized high-throughput experiments with smart optimization algorithms for cost and time efficient optimization of materials properties

    Modeling Data Flow Constraints for Design-Time Confidentiality Analyses

    Get PDF

    Architectural Optimization for Confidentiality Under Structural Uncertainty

    Get PDF
    More and more connected systems gather and exchange data. This allows building smarter, more efficient and overall better systems. However, the exchange of data also leads to questions regarding the confidentiality of these systems. Design notions such as Security by Design or Privacy by Design help to build secure and confidential systems by considering confidentiality already at the design-time. During the design-time, different analyses can support the architect. However, essential properties that impact confidentiality, such as the deployment, might be unknown during the design-time, leading to structural uncertainty about the architecture and its confidentiality. Structural uncertainty in the software architecture represents unknown properties about the structure of the software architecture. This can be, for instance, the deployment or the actual implementation of a component. For handling this uncertainty, we combine a design space exploration and optimization approach with a dataflow-based confidentiality analysis. This helps to estimate the confidentiality of an architecture under structural uncertainty. We evaluated our approach on four application examples. The results indicate a high accuracy regarding the found confidentiality violations

    Wavelength Orthogonal Photodynamic Networks

    Get PDF
    The ability of light to remotely control the properties of soft matter materials in a dynamic fashion has fascinated material scientists and photochemists for decades. However, only recently has our ability to map photochemical reactivity in a finely wavelength resolved fashion allowed for different colors of light to independently control the material properties of polymer networks with high precision, driven by monochromatic irradiation enabling orthogonal reaction control. The current concept article highlights the progress in visible light-induced photochemistry and explores how it has enabled the design of polymer networks with dynamically adjustable properties. We will explore current applications ranging from dynamic hydrogel design to the light-driven adaptation of 3D printed structures on the macro- and micro-scale. While the alternation of mechanical properties via remote control is largely reality for soft matter materials, we herein propose the next frontiers for adaptive properties, including remote switching between conductive and non-conductive properties, hydrophobic and hydrophilic surfaces, fluorescent or non-fluorescent, and cell adhesive vs. cell repellent properties

    Dynamic Access Control in Industry 4.0 Systems

    Get PDF
    Industry 4.0 enacts ad-hoc cooperation between machines, humans, and organizations in supply and production chains. The cooperation goes beyond rigid hierarchical process structures and increases the levels of efficiency, customization, and individualisation of end-products. Efficient processing and cooperation requires exploiting various sensor and process data and sharing them across various entities including computer systems, machines, mobile devices, humans, and organisations. Access control is a common security mechanism to control data sharing between involved parties. However, access control to virtual resources is not sufficient in presence of Industry 4.0 because physical access has a considerable effect on the protection of information and systems. In addition, access control mechanisms have to become capable of handling dynamically changing situations arising from ad-hoc horizontal cooperation or changes in the environment of Industry 4.0 systems. Established access control mechanisms do not consider dynamic changes and the combination with physical access control yet. Approaches trying to address these shortcomings exist but often do not consider how to get information such as the sensitivity of exchanged information. This chapter proposes a novel approach to control physical and virtual access tied to the dynamics of custom product engineering, hence, establishing confidentiality in ad-hoc horizontal processes. The approach combines static design-time analyses to discover data properties with a dynamic runtime access control approach that evaluates policies protecting virtual and physical assets. The runtime part uses data properties derived from the static design-time analysis, as well as the environment or system status to decide about access
    corecore