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Tomáš Bureš
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Abstract

Industry 4.0 enacts ad-hoc cooperation between machines, humans,
and organizations in supply and production chains. The cooperation goes
beyond rigid hierarchical process structures and increases the levels of ef-
ficiency, customization, and individualisation of end-products. Efficient
processing and cooperation requires exploiting various sensor and process
data and sharing them across various entities including computer systems,
machines, mobile devices, humans, and organisations. Access control is
a common security mechanism to control data sharing between involved
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parties. However, access control to virtual resources is not sufficient in
presence of Industry 4.0 because physical access has a considerable effect
on the protection of information and systems. In addition, access control
mechanisms have to become capable of handling dynamically changing
situations arising from ad-hoc horizontal cooperation or changes in the
environment of Industry 4.0 systems. Established access control mecha-
nisms do not consider dynamic changes and the combination with physical
access control yet. Approaches trying to address these shortcomings exist
but often do not consider how to get information such as the sensitiv-
ity of exchanged information. This chapter proposes a novel approach
to control physical and virtual access tied to the dynamics of custom
product engineering, hence, establishing confidentiality in ad-hoc hori-
zontal processes. The approach combines static design-time analyses to
discover data properties with a dynamic runtime access control approach
that evaluates policies protecting virtual and physical assets. The runtime
part uses data properties derived from the static design-time analysis, as
well as the environment or system status to decide about access.

1 Introduction

Industry 4.0 combines many different areas such as Digital Manufacturing, In-
ternet of Things, or Cyber-physical Systems [10]. In contrast to classic software
systems, the interaction with the real world via sensors and actors is a core fea-
ture and enabler for many expected benefits. However, this connection between
virtual and physical world also imposes threats. Industrial systems are valuable
and frequent subjects to security attacks [25, 11], which can lead to high mon-
etary loss because of stopped production or lost business secrets. Controlling
access to resources is one of the most fundamental security requirement [12]
that makes attacks more challenging.

In presence of industrial systems, it is not sufficient to focus only on virtual
resources such as software systems as part of access control. Physical access
control such as limited access to workplaces is crucial as well to protect intellec-
tual property. Employing separate solutions for virtual and physical systems to
protect resources is possible. However, combining these access control mecha-
nisms can strengthen security even more or make defining access control policies
simpler. For instance, virtual access control can limit access to the user inter-
faces of a production system, i.e. the software system controlling machines, and
physical access control limits access to the production hall in addition, which
strengthens the protection. In addition, access control policies become more
precise when considering dynamically changing properties of the environment
instead of only focusing on subjects and objects. For instance, it is not neces-
sary to give all employees access to the production hall but only those that are
assigned to a shift taking place in the very same production hall.

Established access control models [14] usually can express policies in an
appropriate way but corresponding mechanisms do not consider dynamically
changing properties and provide no means to react to them except for rewrit-
ing or at least adjusting policies. Such mechanisms do not scale along with
frequent changes. On the other side, dynamic approaches proposed in related
work such as the ones discussed in Section 6 do not provide means for exploiting
design-time information and therefore leave open the question where to get such
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information from.
To bridge this gap, we propose an approach to formulate access control poli-

cies taking into account dynamically changing properties of the environment,
the accessing subject and the accessed object as well as a policy evaluation pro-
cess during runtime. The policies specify situations involving possibly dynamic
properties and provide a reaction to this situation, i.e. access is allowed or de-
nied. During runtime, these policies also consider the sensitivity of data that
might be accessed. To determine this sensitivity, we propose a static analysis
during design time. The design-time analysis lowers the computational effort
during runtime because the results can be gathered before the execution.

We demonstrate our approach by applying it to a realistic scenario covering
physical and virtual access control. One dynamic property of the scenario are
the locations of factory workers, which influence other properties such as the
assignments of workers to shifts. Another property is the status of the worker,
i.e. if he/she has collected protective gear that is mandatory for accessing the
workspaces. The approach was capable of making appropriate access control
decisions for this dynamically changing scenario.

The chapter is organized as follows. Section 2 introduces a running example
we will use throughout the chapter. The static data flow analysis to reason
about data available in early designs are discussed in Section 3. Access Control
in highly dynamic environments is discussed in Section 4. Section 5 describes
application scenarios of our approach. Section 6 discusses related work. The
chapter concludes with a summary and outlook in Section 7.

2 Running Example

Our running example is an extended Industry 4.0 scenario from [3]. This run-
ning example focuses on dynamic physical and virtual access control during a
production shift in a factory. Figure 1 illustrates the floor plan of the factory. It
consists of a main gate for entering the factory, one dispenser for storing safety
gear, three workplaces with gates, and multiple machines within the workplaces.
The users in the system are workers and shift supervisors. Each worker and
supervisor is assigned a working shift and a working place, where they work.
Additionally, a shift also contains information about possible replacement work-
ers in case a worker is unavailable. The access to the factory is granted for each
worker about 30 minutes before their assigned shift. Then they are also allowed
to open the dispenser to retrieve their safety gear. The access to the workplace
is granted only with their safety gear and based on their assigned shift. Within
their workplace, they can access sensitive information from the machines such
as the precise temperature. For instance, outside their workplace, they only can
access aggregated values, containing less sensitive information. Additionally,
the supervisors can track the whole process in case of an incident, such as a late
worker. In case workers are late for their shift, the supervisor can access the
workers’ phone numbers and send them notifications. Also, in case some workers
have not arrived till 15 minutes before the shift, the system automatically re-
vokes their access rights and selects replacements workers. These replacements
are then automatically assigned access rights for the shift and their workplace.
Figure 1 shows the scenario before a shift. Two groups of workers are moving
to their workplaces. The ones near the main gate are without their safety gear
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Figure 1: Floor plan of the running example with different workers [3]

and the ones near workplace 2 have already gotten their safety gear.

3 Static Data Flow Analysis

The static data flow analysis provides the dynamic access control system with
the sensitivity of data available at all places in the software design. In order to
do that, designers have to model the data processing of the system and run a
data flow analysis that yields the sensitivity of data. The used modeling and
analysis approach [27, 29] is capable of determining other information about
processed data as well, but we focus on sensitivity for the sake of simplicity
here. In the following, we give an overview on the modeling language and the
analysis results. More details on the tooling are available in Section 5.

We use the Palladio modeling language [23] to describe the system design.
Modeling the software architecture in Palladio is done by four different roles:
component developer, system architect, system deployer, and domain expert.
All roles edit their corresponding models in Palladio separately. Figure 2 il-
lustrates the relation between roles and models in Palladio. The component
specification stores descriptions of software components and the internal behav-
ior of components. The assembly model stores information about the wiring
of component instances. The allocation model stores information about the
deployment of component instances. The usage model contains an abstract de-
scription of the user behavior and the workload. In general, there is a large
amount of modeling languages that we could have used. Especially, there are
many languages focused on access control that often also support further se-
curity properties (see Section 6 for more details). We have chosen Palladio for
several reasons: i) Palladio is a domain specific modeling language for describ-
ing software architectures. Therefore, it avoids ambiguities often introduced
by generic modeling languages that would require using imprecise heuristics.
ii) Palladio supports expressing classic aspects of system structures that can
be found in other modeling languages as well. This includes service signatures,
components providing services and calls between services. Therefore, we as-
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Figure 2: Overview of the classical Palladio modelling approach, based on [23].

sume that the resulting modeling language is not overly complicated to use and
that our approach can also be applied to other design-time modeling languages.
iii) Palladio has been proven to support various quality properties including per-
formance [6], reliability [7] or maintainability [24], so it is interesting to see if it
can also support analyzing access control. Besides these reasons, we would like
to stress that we decouple the analysis from the particular modeling language as
already described. Therefore, we do not see our decision as a critical or limiting
point.

As can be seen from the illustration of the metamodel in Figure 3, there is
only a limited amount of extensions shown by grey elements. These extensions
overcome the limitations of the Palladio core language to express behavior in a
data-oriented way. The first and most important extension is the introduction of
Data to the modeling language. To foster integration into the existing modeling
language, we do not enforce dedicated data interfaces but reuse the existing
operational interfaces consisting of call and return signatures. We assume that
data is always exchanged via parameters (which includes return values) in such
systems. Therefore, we require that every parameter transports at least one data
item. Thus, we can represent that multiple different data items are contained
within one parameter without changing the service signature. This enables
refining the transported data with low effort. Otherwise, either the service
signature would have to be adjusted or a more complex data type modeling
would be necessary. Nevertheless, a data item always has an associated data
type.

Palladio already provides means for specifying system and user behavior
in terms of actions. System behavior is encapsulated in a so-called service
effect specification (SEFF). User behavior is encapsulated in a usage description.
Roughly said, the actions contained in these behavior descriptions are either
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Figure 3: Data-Driven Architecture metamodel given as UML class diagram.
Grey elements are extensions to the Palladio core language given by white ele-
ments.
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i) internal actions taking place within a service or user behavior or are ii) call
actions that trigger the behavior of another service. All of these actions can have
an effect on the processed data. For instance, an internal action selecting only
certain parts of available information might reduce the privacy level from highly
confidential to publicly available. In our running example, the data record of a
worker may contain highly sensitive data such as a history of sick days. When
selecting only the phone number of the worker, the data might still be sensitive
but not as much as the whole data record. To specify this effect on data,
we attach a Data Processing Specification to the actions. These specifications
contain a list of Data Operations. These operations consume data, such as
the data specified via parameters, and yield data. Other operations can use
such yielded data to produce new data and yield this produced data. These
operations build a processing chain that eventually yields data that is passed
to other services via parameters or back to the caller via return values. We
provide a set of predefined data operations that can also be extended by further
operations depending on the particular domain.

There are five categories of data processing operations as shown in Table 1.
Operations in the source category do not consume data but only yield data.
These operations are the start of a data flow. This either covers creating
completely new data (CreateData) or loading data from data stores (Load-
Data/LoadAllData). Obviously, when only yielding data, the sensitivity of data
has to be specified explicitly. Operations in the sink category only consume but
do not yield data. This covers storing the data (StoreData) but also discarding
data in various forms (remaining operations). These operations are the end
of a data flow. Transmission operations bridge the gap between control flow
and data flow by attaching data to parameters and taking data from returns
(PerformDataTransmission) as well as returning data (ReturnData). These op-
erations do not change the sensitivity of data. Relational operations perform
operations of relational algebra on data. The effect of operations on data sen-
sitivity depends on the particular data type and has to be specified per data
type. Joining (JoinData) builds new data from consumed data parts or frag-
ments. Merging data sets (UnionData) builds a new data set by merging two
data sets. Extracting a data part or fragment (ProjectData) builds new data
based on incoming data. Selecting data from a data set (SelectData) filters data
sets based on a selection parameter. The last operation in a dedicated category
is TransformData. The operation represents a generic data transformation to
be specified by the designer. The operation allows the designer to explicitly
state the effect of data processing on data properties such as the sensitivity.
This is different to previous operations because it does not require general ap-
plicable rules to derive the sensitivity anymore but allows to define these rules
in particular for one dedicated operation.

We use characteristics to describe properties, such as sensitivity, of data or
system parts. As illustrated in Figure 3, a characteristic always has a corre-
sponding type. The type refers to a set of possible values. Because this set is
a finite set of discrete values, we use enumerations to describe this value set.
With respect to our running example, we specify a characteristic type privacy
level with the values public, internal use, sensitive and highly sensitive with
increasing sensitivity. A characteristic selects an arbitrary number of values,
which means that these values are available in this particular characteristic. In
our running example, it is only useful to have exactly one privacy level, so ev-
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Category Operation In Out

Source CreateData 0 1
LoadData 0 1
LoadAllData 0 1

Sink StoreData 1 0
DeleteData 1 0
UserReadData 1 0
SystemDiscardData 1 0

Transmission PerformDataTransmission n m
ReturnData 1 0

Relational JoinData n 1
UnionData n 1
ProjectData 1 1
SelectData 1(+n) 1

Characteristics TransformData 1 1

Table 1: Predefined data processing operations.

ery characteristic only holds one value. Several structural elements within the
software architecture are characterizable, which means that they can hold char-
acteristics. In our running example, this is not necessary but in other scenarios,
it might be useful to specify roles, clearance levels or criticality of system parts.
The characterizable system parts are the following: A usage represents a user,
so it is useful to make it characterizable to represent properties of users. A
component represents a service provider, for which it is also useful to specify
properties. Component instances, i.e., assembly contexts, are allocated to a
node, which can also have relevant properties such as a geographical location
or an owner. Nodes communicate via links and depending on the scenario it
might be necessary to consider the properties of the network connection between
nodes.

In our running example, the system service providing the foreman with the
phone number of a worker is specified roughly as sketched in Figure 4. Initially,
the foreman sends the worker name to a service of his/her Management Com-
ponent. The action-based specification of the service is given in the lower part
of the management component. To provide the phone number, the component
calls the DB Component and extracts it. To specify the data processing more
precisely, the designer extends the actions by data specifications. The specifi-
cation of the call action simply contains a PerformDataTransmission operation
that receives a list of workers from the database component. The internal action
is specified by two actions. The first action selects a particular worker based
on the name of the worker from the list of workers. The second action extracts
the phone number of that worker. The data specification of the internal action
of the database component simply loads all workers from the database Human-
ResourceStorage. All shown operations except for the Project operation do not
change the privacy level but simply forward it. The Project operation effec-
tively lowers the privacy level because it only selects the phone number that
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is considered less sensitive compared to all information about a worker. The
effect of data processing, which is the effect on the privacy level in our running
example, is defined for every triple of data processing operation type, input
data type and output data type. Because the characteristic types are usually
case-specific, the definition of data processing effects are also specified individu-
ally per case. However, reusing the effect in cases using the same characteristic
types is possible.

DB Component Management Component

Foreman

Select

Worker[]

WorkerName

ProjectWorker

PhoneNumber

PerformDataTransmissionLoadAllData

Worker[]

Worker[]

HumanResourceStorage

IForeman

getPhoneNumber(workerName : String) : PhoneNumber

...

<<CallAction>>
callDB

<<InternalAction>>
getPhoneNumber

<<InternalAction>>
getPhoneNumber

Figure 4: Excerpt of the Palladio model representing the phone number provider
used by the foreman.

The data flow analysis traces data including its properties through the sys-
tem and determines which actor has access to which data. A label propagation
algorithm carries out this analysis. The propagated labels are the literals of
characteristic types and the propagation rules stem from the data processing
effect of the used operators. Afterwards, the raw result of the analysis is trans-
formed into a text file specifying a) the subject that accesses data, b) the type
of access, which is always reading in our case, c) the object that is accessed and
d) the determined privacy level. The line for the phone number access, for ex-
ample, looks like this: foreman;read(phoneNumber);worker;internal-use.
More details on the data flow analysis are given in Section 5.

4 Dynamic Access Control

To specify access control in a highly dynamic environment of Industry 4.0, we
base the approach on our previous work [4], where we defined the concept of au-
tonomic ensembles. An ensemble is a dynamically formed group of components
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(they can be both software and hardware components but also, importantly,
directly uncontrollable components like people, etc.) that is formed to achieve
joint goal or perform a coordinated activity. Components within a single en-
semble are selected dynamically at runtime, based on a set of predicates defined
in the ensemble.

Using ensembles for specifying access control in a system, an ensemble defini-
tion represents a particular situation in a system and defines components taking
part in the situation and access rules for these components. The ensembles are
established at the moment the particular situation occurs in the system and, in
the same way, it ceases its existence when the situation disappears.

Compared to usual component-based approaches, we do not require direct
control of the components. Thus, as mentioned above, components can be of
any kind—software and hardware but also people or even places.

In both cases of components and ensembles, our approach distinguishes be-
tween definitions (types) and instances of components and ensembles. I.e., for
components we can have a single type defining a worker or a shift (in the run-
ning example) and then multiple instances of them. Similarly for ensembles,
we can have an ensemble type defining access to workplace and then as many
instances as we have shifts at a particular time.

The ensembles’ definitions in our approach represent an access control rule.
In more detail, the ensemble definition specifies a situation, identifies compo-
nents taking roles in the situations and grants/denies access to particular re-
sources.

In the rest of this section, we describe the above shown concepts on the
running example and further describe the semantics.

4.1 Specification of the Running Example

For easy creation of access control specifications and rapid testing of our ap-
proach, we have created a Scala-based domain specific language (DSL). Listing 1
shows an excerpt of the specification of the running example (described in Sec-
tion 2). Being defined as an Scala internal DSL, its usage requires at least basic
knowledge of the Scala language; on the other hand, the necessary Scala con-
cepts are more-or-less the same as in any other modern programming language.

Scala is an ideal language for rapid creation of DSL, as it has a variable
and flexible syntax (compared to more traditional languages like, e.g., Java).
Thanks to this feature, it is easy to create new ”keywords”, which from the
implementation perspective are regular methods. When calling a method with
a single argument, the round parentheses around arguments can be replaced
with curly braces. This is ideal when a particular method takes as its argument
another method (or function) and thus its call can be seen as a block of code
prefixed by a keyword (in reality, it is a method call with an anonymous function
passed as its argument). A particular example in our DSL is, e.g., the ”keyword”
situation, which actually is a call of a method which accepts a boolean function as
its argument. These method calls, which are placed directly in the class body,
are executed during the class instantiation, i.e., they are part of the default
constructor. Another nice feature of Scala is that methods can be used as infix
operators. E.g., the isAfter operator on line 45 is just a method call on the object
now.
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In our DSL, both the component and ensemble types are modeled as classes
while their instances are the particular classes’ instances. The particular classes
have to extend the Component class or Ensemble class respectively. In the exam-
ple, there are six components (lines 3–25), which represent the physical com-
ponents in the running example—namely doors, head-gear dispensers, workers,
work places and factories. Each of the components has its attributes (called a
component knowledge in the terminology of ensembles), however, as we do not
directly control the components, we can only observe their values. Here, for
example, all of the components have the attribute id and most of them have the
position attribute.

The ensembles can be hierarchically nested (an ensemble can contain other
ensembles). This means that components, which are members of an ensemble,
have to be also members of the parent ensemble. Thus, a top-level ensemble (in
our DSL it has to extend the RootEnsemble class) describes a goal of the system
as a whole while the sub-ensembles decompose the system into sub-goals, which
are easily manageable. A component can be member of many ensembles at the
same time (even directly unrelated ensembles) reflecting a common requirement
that a single component can be simultaneously in many different situations.

In the example, there are four ensemble types. The top-level ensemble—
FactoryTeams (starting at line 27)—represents all the individual ShiftTeam en-
sembles (line 116). As shifts are specified externally, the FactoryTeams ensemble
only models the teams. The FactoryTeams ensemble declares a global constraint
for the system that standby workers need to be assigned to the shifts where
required and a standby worker cannot be shared among several shifts (lines
117–120). This is necessary, since the selection of standby workers and giving
them the respective access control rights is performed by the ensemble system.
The FactoryTeam ensemble is instantiated for every factory in the example (line
122).

The ShiftTeam ensemble (lines 28–114) models most of the activities in the
system. It is parameterized by the Shift component instance (which defines the
shift). The individual access control rules are represented by sub-ensembles.
The ensemble declares 5 lists (lines 29–32) which aid identification of work-
ers during their selection by sub-ensembles. In general, the ShiftTeam’s sub-
ensembles can be divided into ensembles, which (i) assign permission to indi-
vidual workers and which (ii) notify workers about selection for or removal from
a shift. The former ones are the ensembles AccessToFactory, AccessToDispenser,
AccessToWorkplace, while the latter ones are CancellationOfWorkersThatAreLate and
AssignmentOfStandbys. The NotificationAboutWorkersThatArePotentiallyLate ensem-
ble performs both functions. All of them have the same structure, which is as
follows. First, there is a definition of the situation, which defines a spatial and
temporal condition under which the ensemble is formed. For the AccessToFac-

tory, the current time has to be in the interval of start of the shift minus 30
minutes and end of the shift plus 30 minutes. It is similar for AccessToDispenser,
but there is a different time interval. In the case of the AccessToWorkplace, there
is an extra condition (in addition to the situation) that the workers must have
a headgear from the dispenser expressed as a selection of the shift workers with
the headgear (line 52). All these three ensembles assign (lines 39, 48, and 57)
the particular permissions (to enter the factory, use the dispenser, enter the
workplace) to the workers selected by the conditions.

The NotificationAboutWorkersThatArePotentiallyLate ensemble detects workers
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assigned to the shift but not present in the factory (line 61) 20 minutes before
start of the shift (line 63). For these workers, the ensemble notifies the particular
foreman that they are late and allows the foreman to see the workers’ phone
numbers (the foreman can call them to “hurry up”—line 65) and their distance1

from the factory (to see whether there is a chance to come in time yet—line 66).
The CancellationOfWorkersThatAreLate ensemble is similar to the previous one,

but it detects workers, which are late even 15 minutes before start of the shift
(line 73), and notifies them that they are canceled from the shift (line 75).

Finally, the AssignmentOfStandbys ensemble selects and notifies the standby
workers that replace the canceled late workers. To do so, there is defined the sub-
ensemble StandbyAssignment (line 79), which selects a suitable standby worker
for a particular canceled worker (the selected standby has to have the same
capabilities as the canceled one). The sub-ensemble is instantiated for each
canceled worker (lines 85 and 86). The constraint (line 91) requires that a
single standby worker is not used as a replacement for several workers. Within
the given time interval (the situation definition at line 88), the ensemble notifies
the selected workers to come (line 93) and the foreman (line 94) of the particular
shift.

The ensemble NoAccessToPersonalDataExceptForLateWorkers expresses access con-
trol assertions (i.e., forbidden situations). Such assertions serve as safe-guards
to detect potential inconsistencies in the specification. At runtime, they are
used to verify that access control rules determined by ensembles. In detail, it is
described and discussed in the following section.

From a technical point of view, a part of the ensembles in the example
is declared as classes while other ensembles are declared as objects. This is
an exploitation of another feature of the Scala language—the object is a class
definition with a singleton instance. The name after the object keyword refers
to the instance. The ensembles that are needed in a single instance only are
therefore defined as objects.

To summarize our DSL, there are two predefined classes (Ensemble and Com-

ponent) for extensions. Plus, there are six new ”keywords” (actually methods)
that are situation, constraints, rules, allow, deny, and notify. The semantics of these
keywords will be explained in the following section.

1 class TestScenario(scenarioParams: TestScenarioSpec) extends Model with ModelGenerator {
2 ...
3 class Door(val id: String, val position: Position) extends Component
4 class Dispenser(val id: String, val position: Position) extends Component
5 class Worker(
6 val id: String, var position: Position,
7 val capabilities: Set[String], var hasHeadGear: Boolean
8 ) extends Component {
9 def isAt(room: Room) = room.positions.contains(position)

10 }
11 class WorkPlace(
12 id: String, positions: List[Position], entryDoor: Door
13 ) extends Room(id, positions, entryDoor) {
14 var factory: Factory =
15 }
16 class Factory(
17 id: String, positions: List[Position], entryDoor: Door,
18 val dispenser: Dispenser, val workPlaces: List[WorkPlace]
19 ) extends Room(id, positions, entryDoor)
20 class Shift(
21 val id: String, val startTime: LocalDateTime,

1As the exact position of a worker outside the factory can be potentially very sensitive
information, in our implementation we are using abstracted values like close, far, etc.
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22 val endTime: LocalDateTime, val workPlace: WorkPlace,
23 val foreman: Worker, val workers: List[Worker],
24 val standbys: List[Worker], val assignments: Map[Worker, String]
25 ) extends Component
26

27 class FactoryTeam(factory: Factory) extends RootEnsemble {
28 class ShiftTeam(shift: Shift) extends Ensemble {
29 val canceledWorkers = shift.workers.filter(wrk => wrk notified

AssignmentCanceledNotification(shift))
30 val calledInStandbys = shift.standbys.filter(wrk => wrk notified CallStandbyNotification(shift))
31 val availableStandbys = shift.standbys diff calledInStandbys
32 val assignedWorkers = (shift.workers union calledInStandbys) diff canceledWorkers
33

34 object AccessToFactory extends Ensemble {
35 situation {
36 (now isAfter (shift.startTime minusMinutes 30)) &&
37 (now isBefore (shift.endTime plusMinutes 30))
38 }
39 allow(shift.foreman, ”enter”, shift.workPlace.factory)
40 allow(assignedWorkers, ”enter”, shift.workPlace.factory)
41 }
42

43 object AccessToDispenser extends Ensemble {
44 situation {
45 (now isAfter (shift.startTime minusMinutes 15)) &&
46 (now isBefore shift.endTime)
47 }
48 allow(assignedWorkers, ”use”, shift.workPlace.factory.dispenser)
49 }
50

51 object AccessToWorkplace extends Ensemble {
52 val workersWithHeadGear = (shift.foreman :: assignedWorkers).filter(wrk => wrk.hasHeadGear)
53 situation {
54 (now isAfter (shift.startTime minusMinutes 30)) &&
55 (now isBefore (shift.endTime plusMinutes 30))
56 }
57 allow(workersWithHeadGear, ”enter”, shift.workPlace)
58 }
59

60 object NotificationAboutWorkersThatArePotentiallyLate extends Ensemble {
61 val workersThatAreLate = assignedWorkers.filter(wrk => !(wrk isAt shift.workPlace.factory))
62 situation {
63 now isAfter (shift.startTime minusMinutes 20)
64 }
65 workersThatAreLate.foreach(wrk => notify(shift.foreman,

WorkerPotentiallyLateNotification(shift, wrk)))
66 allow(shift.foreman, ”read.personalData.phoneNo”, workersThatAreLate)
67 allow(shift.foreman, ”read.distanceToWorkPlace”, workersThatAreLate)
68 }
69

70 object CancellationOfWorkersThatAreLate extends Ensemble {
71 val workersThatAreLate = assignedWorkers.filter(wrk => !(wrk isAt shift.workPlace.factory))
72 situation {
73 now isAfter (shift.startTime minusMinutes 15)
74 }
75 notify(workersThatAreLate, AssignmentCanceledNotification(shift))
76 }
77

78 object AssignmentOfStandbys extends Ensemble {
79 class StandbyAssignment(canceledWorker: Worker) extends Ensemble {
80 val standby = oneOf(availableStandbys)
81 constraints {
82 standby.all( .capabilities contains shift.assignments(canceledWorker))
83 }
84 }
85 val standbyAssignments = rules(canceledWorkersWithoutStandby.map(wrk => new

StandbyAssignment(wrk)))
86 val selectedStandbys = unionOf(standbyAssignments.map( .standby))
87 situation {
88 (now isAfter (shift.startTime minusMinutes 15)) && (now isBefore shift.endTime)
89 }
90 constraints {
91 standbyAssignments.map( .standby).allDisjoint
92 }
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93 notify(selectedStandbys.selectedMembers, StandbyNotification(shift))
94 canceledWorkersWithoutStandby.foreach(wrk => notify(shift.foreman,

WorkerReplacedNotification(shift, wrk)))
95 }
96

97 object NoAccessToPersonalDataExceptForLateWorkers extends Ensemble {
98 val workersPotentiallyLate =
99 if ((now isAfter (shift.startTime minusMinutes 20)) && (now isBefore shift.startTime))

100 assignedWorkers.filter(wrk => !(wrk isAt shift.workPlace.factory))
101 else Nil
102 val workers = shift.workers diff workersPotentiallyLate
103 deny(shift.foreman, ”read.personalData”, workers, PrivacyLevel.ANY)
104 deny(shift.foreman, ”read.personalData”, workersPotentiallyLate, PrivacyLevel.SENSITIVE)
105 }
106 rules(
107 // Grants
108 AccessToFactory, AccessToDispenser, AccessToWorkplace,
109 NotificationAboutWorkersThatArePotentiallyLate,
110 CancellationOfWorkersThatAreLate, AssignmentOfStandbys,
111 // Assertions
112 NoAccessToPersonalDataExceptForLateWorkers
113 )
114 }
115

116 val shiftTeams = rules(shiftsMap.values.filter(shift => shift.workPlace.factory ==
factory).map(shift => new ShiftTeam(shift)))

117 constraints {
118 shiftTeams.map(shift => shift.AssignmentOfStandbys
119 .selectedStandbys).allDisjoint
120 }
121 }
122 val factoryTeams = factoriesMap.values.map(factory => root(new FactoryTeam(factory)))
123 }

Listing 1: Access control specification

4.2 Semantics

Formally, the specification describes a constraint optimization problem. A solu-
tion to the problem determines which ensemble instances are to be formed and
which are their members. Every ensemble can be instantiated multiple times
(once for every instance of the situation it reflects). To connect the instance
of an ensemble with a particular instance of the situation, ensembles are typi-
cally parameterized (using constructor arguments). Only in case an ensemble
is a singleton, the parameters are missing (e.g., in case of CancellationOfWork-

ersThatAreLate). An ensemble instance is created only if the situation it reflects
happens. Formally, it is created if the condition specified in the situation block
is true.

Each ensemble identifies its members components either directly (e.g., in the
AccessToFactory and AccessToDispenser ensembles) or by listing potential members
and formulating constraints governing their selection (e.g., in the AssignmentOf-

Standbys and StandbyAssignment). The identification of potential members is done
through functions oneOf and unionOf. The result is a set variable that represents
a selection from the set of components given to these functions as a parame-
ter. The valuation of these variables is constrained by the constrains blocks,
which make it possible to express the constraints using common logical and set
operators.

When ensembles are nested, the parent ensemble identifies all potential sub-
ensembles. This is done with the rules statement. The sub-ensembles are how-
ever only instantiated if their situation condition holds. Ensembles are properly
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nested, thus a sub-ensemble instance can be only instantiated if the parent en-
semble is instantiated, too. Formally, the rules statement creates a condition
whose existence of a sub-ensemble instance implies the existence of the contain-
ing ensemble.

Nested ensembles form a tree structure. The root is identified using the root

statement.
If an ensemble is instantiated, its allow statements determine the permissions.

Each allow permission is formed as a triple <subject,verb,object>. Our access
control model denies every access request, unless it is explicitly allowed. Thus,
deny rules by themselves are not needed. Nevertheless, we use them in our
approach as runtime assertions. We say that a specification is consistent if
there are no conflicting allow and deny rules. Each deny permission is formed as
a triple <subject,verb,object> or as a quadruple <subject,verb,object,privacy level>.
The form with the privacy relates to what we presented in Section 3. It makes it
possible to restrict the deny rule only to data at a particular level of sensitivity.
This is useful to protect data privacy by means of access control because it
allows us to dynamically assign and restrict access to data based on changing
situations in the environment.

An instantiated ensemble may also perform notifications (specified using
notify ) statement. This is needed to let a user know about permissions that
have been dynamically assigned and revoked. The notify statement has the
form <target,message>. The semantics is that every such pair is notified only
once. All subsequent notifications for the same pair are ignored.

5 Application Scenarios

We have already presented the models used to describe the static and dynamic
part of our approach in the previous sections, but have only roughly described
how these models were used to make access control decisions. Therefore, we
briefly give an overview on how both parts of the approach are combined to
decide about access to information or locations in Section 5.1. Afterwards,
we give insights into the corresponding tool support that we used to realize our
running example. We will start with the tooling for static analyses in Section 5.2
and continue with tooling for dynamic access control enforcement in Section 5.3.

5.1 Overview of the Combined Approach

The overall goal of the combined approach is to decide about virtual or physical
access requests during runtime. To do so, there is a decision point that receives
access requests from various services or locations that the decision point answers.
This decision point is the last action in the overview given in Figure 5. To
properly decide about requests, the decision point needs the set of applicable
rules, i.e., the policy that specifies allowed and denied access requests.

Which rules are applicable depends on the current system state and system
context. The ensembles of the runtime approach consider these dynamically
changing situations to filter all defined rules for the applicable ones in a solving
process. The solving process needs the ensembles, the system or context state
and the privacy levels of processed data. The state information originates from
a set of various probes that collect state information. The ensembles contain
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Figure 5: Overview on combination of static design time and dynamic runtime
parts of approach given as UML activity diagram. White elements are executed
manually, grey elements are executed automatically.

the access rules and criteria for when the rules shall be applied during design
time. The privacy levels are the result of a sensitivity analysis executed on the
software architecture during design time. The privacy levels serve as additional
source of information for deciding on the applicability of a rule as we will show
later.

As can be seen in Figure 5, the only manual steps in the process sketched
before are the definition of the software architecture and the ensembles. Both
steps have to be done during design time. During runtime, the results of these
manual steps are used.

There are two roles involved in defining both artifacts: A software architect
is responsible for defining the system architecture including the data process-
ing and turning access control policies into ensembles (in cooperation with an
access control expert). The software architect has to know the architectural de-
scription language Palladio and its extension for data processing as well as the
internal DSL for specification of ensembles. An access control expert supports
the software architect by defining the access control policies as well as addi-
tional data processing operations and data properties. Access control experts
also have the possibility to extend or to define new design-time analyses. In
our scenario, the sensitivity analysis is predefined, so the access control expert
does not have to define that particular analysis anymore. The analysis of the
static design-time analysis is specified in a logic programming language that the
access control expert has to know. The analysis definition uses the processing
operations and data properties to determine the privacy levels. In the running
example, the privacy levels are the data properties. The combination of data
is an example of a data processing operation. The effect of such a combination
is that the highest privacy level available on inputs is applied to the output. It
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is reasonable to have a dedicated access control expert defining these artifacts
because a software architect might not have the required expertise to do so. The
software architect can assume that the access control expert covers all important
properties and processing operations that the architect can reuse afterwards.

5.2 Palladio Design-Time Tooling

The overall process to determine data sensitivity during design time is shown
in Figure 6. We start with a conventional system design created using the non-
extended version of Palladio. After modeling the architecture, we expect the
architect to extend it with data processing specifications that include specifying
data, data exchange between services and data processing steps by using the
modeling language presented in Section 3. The modeling language is available
as metamodel2 and can be used by a prototypical graphical editor3. To decou-
ple our analysis approach from the particular modeling language, we defined a
dedicated analysis model4 that is tailored to our analysis and only includes the
essential aspects of the design. We later describe this model and how it uses
the effects of data processing for every operation that we discussed in Section 3.
The mapping of the architecture to the analysis model is done automatically
by a model-to-model transformation5. The actual analysis is carried out by a
logic program. Again, the transformation into the logic program is done auto-
matically by a model-to-text transformation6. Architects now can execute the
data sensitivity analysis within the logic program. Internally, an interpreter
takes the logic program and executes a query for the sensitivity. In the last
step, the sensitivities are extracted in form of privacy levels from the analysis
result. This requires mapping system elements from the logic program back to
the architecture. This is done automatically by looking up the elements in the
traces of the model transformations. Eventually, the privacy levels are written
into a file to be used during runtime by the dynamic access control analysis.

The analysis metamodel as shown in Figure 7 is a description of the system
design tailored to data flow analyses. A system consists of system usages and
operations. System usages are calls to the system by external actors. Opera-
tions are processing steps of the system that consume and produce data. The
interface of such an operation is given by variables. There are variables rep-
resenting parameters, returns and states. Operation calls from external actors
to operations, as well as calls between operations transport data by defining
assignments to target states or parameters. The operations specify their effect
by assignments to returns. Assignments can assign constant values but can also
use parameters or states to derive a value. A value represents one particular
characteristic such as the privacy level sensitive. In terms of label propagation,
these values are labels and the assignments are the propagation functions. For
a sake of simplicity, the elements representing the value types and the terms for
the assignments are not shown in Figure 7.

2https://github.com/Trust40-Project/Palladio-Addons-DataProcessing-MetaModel
3https://github.com/Trust40-Project/Palladio-Addons-DataProcessing-Editor
4https://github.com/Trust40-Project/Palladio-Addons-DataProcessing-PrologModel
5https://github.com/Trust40-Project/Palladio-Addons-DataProcessing-

AnalysisTransformation
6https://github.com/Trust40-Project/Palladio-Addons-DataProcessing-

PrologModel/tree/master/bundles/org.palladiosimulator.pcm.dataprocessing.prolog.

transformation
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The automated mapping from the software architecture to the analysis model
is as follows. There is always exactly one system for each modeled software archi-
tecture. Every usage, i.e., every user, is mapped to a system usage. Every data
processing operation is mapped to an operation. All data assigned to parameters
in the architecture become parameter variables of the corresponding operation.
All data assigned to returns in the architecture become return variables of the
corresponding operation. The variable assignments of return definitions of an
operation are given by the processing effects of the data processing operations
in the software architecture. For instance, the projection operation separating
the phone number from a worker data record has the effect of reducing the
sensitivity. The variable assignments of parameter definitions are always copy
assignments that just pass variables as they are to the next operation. The next
operation is determined by the data dependencies in the software architecture.
If a data processing operation requires a certain data item that another oper-
ation emits, there is a data dependency. This data dependency is mapped to
an operation call from the emitting operation to the receiving operation. There
are variables and property definitions for every possible value of all possible
characteristic types. For instance, there is a variable for every privacy level for
the return value of the phone number getter. An assignment of a truth value to
such a variable indicates whether the privacy level is available.

An automated model-to-text transformation carries out the mapping to the
logic program. Most parts of the transformation simply map elements one by
one to logical facts. The remainder of the transformations adds logical rules to
perform the label propagation. Because both steps are mostly straight forward,
we omit a detailed discussion of the transformation to save space. Instead, we
focus on the query for the generated logic program and explain relevant parts
of the logic program while explaining the query. The goal of the query shown in
Listing 2 is to find the privacy level VAL of an output VAR of an operation OP with
data type T. Please note that the resolution algorithm of Prolog is capable of
finding all possible solutions for a query, which means that all possible bindings
for the given variables are found. This is exactly what we are aiming for because
we want to get all privacy levels for all outputs of all operations in the system. To
do so, we define that the interesting characteristic type is the privacy level in line
1. In line 2, we find a return variable VAR with the data type T for the operation
OP. Again, this line automatically considers all returns of all operations. After
that line, all of these variables are bound, i.e. have a value. Lines 3-4 ensure
that we have a valid call stack S, which is just a list of called operations and
operation calls. The call stack has to have the current operation OP on the
top, which means that the previous call has been made to this operation and
there is no call after that call. In line 5, we determine the privacy level VAL for
the return variable VAR for the given call stack S. The call stack is important
here because operations can be called from various places, which can have an
effect on the privacy level. For instance, consider a simple echo operation that
just returns what it received. If the operation is called with highly sensitive
data, it will return highly sensitive data. Therefore, it is crucial to know the
call stack for determining the privacy level. Under the hood, the returnValue

rule goes back the call stack until it can find a privacy level by applying the
label propagations we mentioned before as part of the analysis metamodel. One
out of many results is given in lines 7 to 13. It just reports all bindings to all
variables mentioned in the query. In line 12, we can see that the privacy level
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Listing 2: Queries to logic program for determining privacy levels of yielded
data.

1 ?- ATTR = ’PrivacyLevel’,

2 operationReturnValueType(OP, VAR, T),

3 S = [OP|_],

4 stackValid(S),

5 returnValue(S, VAR, ATTR, VAL).

6
7 ATTR = ’PrivacyLevel’,

8 OP = ’getPhoneNumber’,

9 VAR = ’RETURN’,

10 T = ’PhoneNumber’,

11 S = [’getPhoneNumber’|...],

12 VAL = ’internal-use’;

13 ...

of the phone number is now internal-use.
For the running example, we can reuse the shown query, so no manual defi-

nitions are necessary. However, access control experts can define further queries
or extend the existing query by using a set of predefined logic predicates. This
certainly requires some effort in learning the predicates and also requires some
limited knowledge in logic programming. However, supporting customize queries
provides huge flexibility and allows using the analysis approach for other pur-
poses and scenarios. As we have shown in another publication [28], such flexible
query definitions can not only be used to collect information such as privacy
levels but can also look for design issues violating confidentiality requirements
in a software architecture. Alternatively, a domain specific language (DSL) can
be used to define data flow constraints which requires no knowledge about the
analysis process [15].

In the last step, we create a CSV file based on the returned results. The
CSV file consists of the columns subject, action, object and privacy level. In the
chosen example, the subject is the foreman. The action is reading the phone
number. The object is a worker. The privacy level is internal-use. The created
CSV file is passed to the tooling considered with dynamic access control during
runtime that we describe in the following.

5.3 Runtime Decision Making

For runtime decision making (also described in [3]), we base our implementation
on the standard MAPE-K loop [20]. The loop phases work as follows. (a) Mon-
itoring: data about the current situation are collected (in the running example,
a position of all the workers, data about the shifts, etc. (b) Analysis: Ensembles
are instantiated according to the observed situation. Then the specification of
ensembles is translated into a constraint satisfaction problem (CSP). A CSP
solver is then applied to find a model for the logical theory described by the
CSP and thus the ensemble instances are determined. (c) Planning: Determined
ensemble instances provides particular access grants. (d) Execution: The access
grants are applied to the system and thus system is updated to conform with
the current situation observed in phase (a).

Given the fact that we employ a CSP solver to determine the ensemble
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Figure 8: Evaluation results.

instances and their member components, a question naturally arises about the
scalability of such an approach as the CSP solving has inherently exponential
complexity. To showcase how our approach scales, we have conducted a series
of experiments of different scenario sizes and two points of time in the scenario:
(a) 17 minutes before the shift and (a) 13 minutes before the shift.

The different scenario sizes are achieved by varying the number of workers in
a shift (from 50 to 500) and the percentage of late workers that are canceled from
the shift (from 5% to 20%). There are 3 shifts running at the same time. The
shifts compete for the same standby workers. The number of standby workers
available is equals to no of workers in shift∗percentage of late workers ∗ 5.

These two times were selected because they mark two major cases in the
scenario. Case (a) corresponds to the time when multiple ensembles are instan-
tiated, but all of these perform selection of member components directly. Thus
no complex constraint optimization is needed. Case (b), on the other hand,
involves the assignment of standbys—i.e., one unique suitable standby for each
worker that is late. This assignment represents an optimization problem which
is inherently NP hard—it is essentially a scheduling problem.

From the implementation perspective, we deal with both these two cases
the same way—we translate the specification to a constraint solving problem
(CSP) and use a CSP solver to figure out, which ensemble instances should
exist and which components belong to which ensemble instance. Having this in
place, the ensemble instances determine the allow, deny and notify rules. In case
of the direct selection in case (a), the constraint problem contains essentially
no alternatives to select from, thus, the CSP solving amount to traversing the
constraint graph and grounding the variables to their only permissible value.
Thus, even thought it is processed by the CSP solver, the computation time is
essentially linear to the number of components and potential ensemble instances.
In case (b), there are multiple mutually exclusive options that the CPS solver
has to traverse. This is, as expected, exponential, but only in the dimension
that determines variants—in our case the number of workers that have been
cancelled (and thus with the number of standby workers shared between the
three shifts).

We conducted the scalability experiments on Intel(R) Xeon(R) CPU E5-
2660, running on 2.20GHz. In the case of #1, we performed a warmup of 1000
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computations and collected 10000 measurements for each size of the scenario.
In the case of #2, we performed a warmup of 10 computations and collected 100
measurements for each scenario size. We excluded computations which exceeded
60 seconds. The results are shown in Fig. 8a and Fig. 8b.

In case (a), the time needed to resolve the ensemble instances scales linearly
with the number of workers in a shift. Given the fact that 3 shifts are evaluated
together, we can easily compute the access rules for 1500 workers in approx. 3.5
milliseconds. Case (b) exhibits exponential growth in time with the increasing
percentage of late workers. Nevertheless, even for 10% of late workers, it is
possible to assign access grants to 1500 persons in 15 seconds.

The same assignment process is performed for each factory in our running
example. As each factory has its own pool of shared standby workers, the
ensembles (and consequently the access rules) can be evaluated independently
(as it is so in our test case) and in parallel. Thus, the number of factories does
not have a significant impact on the computation time, which makes it possible
to scale our use-case to arbitrarily large instances—assuming that the size of
a shift remains below 500 workers and the percentage of workers that do not
come to the shift is below 10%, which we believe is a realistic assumption.

5.3.1 Visualization

To allow for rapid development of access control specifications and immediate
observations of results, we have developed a visualization, which provides not
only a live view of the simulations, but can also be used for visualization of
actual real-life data. Figure 9 shows a screenshot from the visualization of the
running example where most of the workers in the factory were simulated and
the highlighted (in red) worker showed an actual person requiring interaction
with actual devices (access card readers, etc.).

Figure 9: Demo visualization.

The visualization has been developed using our tool IVIS [8], which provides
a framework for easy creation of IoT related visualization.
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6 Related Work

In this section we discuss work in several areas of research related to our ap-
proach.

Access Control Types: Access control is one way to protect the resources
of the system. It regulates who can access protected resources and therefore
increase the confidentiality of the system. One established way of access control
is Role-based Access Control RBAC [13]. It groups users to roles and abstracts
from the underlying user, which increases the comprehensibility of access poli-
cies. However, the sole focus on roles does not allow to easily model fine-grained
access control policies that depend on the environment, like in our running ex-
ample, the period for entering the factory. Organisation-based Access Control
(OrBAC) [18] considers more contextual information, by explicitly modelling
context information [9]. Originally, it could not support multiple organizations.
However, newer approaches [35, 32] exist for handling multiple organizations, as
they might exist in Industry 4.0. In contrast to our approach, their analysis does
not support data flow definitions or analysis based on the software architecture.
Another approach considering the context for access control is Attribute-based
Access Control (ABAC) [16]. Here different Boolean values can form logical
conjunctions to model access policies.

Self-adaptive Access Control Policies: Self-adaptive RBAC (saRBAC) [30]
models a system by using Markov chains to determine unusual user behavior.
On discovery, it automatically adapts the access policies to mitigate potential
attacks. In contrast to our approach, the system’s architecture is not consid-
ered, and only the user behavior is relevant for the adaption. Verma et al.
[34] describe an approach, which provides a policy generation for dynamically
established coalitions. This is similar to our dynamic approach. However, the
coalitions consist only of people with the same shared goal. Additionally, they
are not dynamically described as in our approach. Bailey et al. [5] introduce
an approach for the management of dynamic policy adaption and optimization
using a MAPE-K loop. While this is similar to our dynamic analysis, we use
a unified modelling approach for components under direct control and those
beyond direct control, such as humans.

Model-driven Approaches for Confidentiality : Nguyen et al. [22] provide an
overview of different model-driven security analysis approaches. They conclude
that most model-driven approaches analyze confidentiality or access control,
similar to our approach. The design-time sensitivity analysis basically is a
confidentiality analyses that contributes to the overall access control analysis
provided by the complete approach. In the following, we only discuss closely
related approaches as examples. UMLSec [17] is an UML profile extensions for
annotating security properties. These properties then can be analyzed with the
CARiSMA [1] tool. In contrast to our approach, they work on the control flow
and have no coupling to dynamic runtime policy management. Another UML
extension is SecureUML [21]. It uses internally an RBAC approach, which can
be extended with OCL statements to support dynamic access control. It also
provides an export function to use the policies during runtime. However, they
provide no analysis based on the data flow. Also, since their export functions
generate specific Java code, it cannot be reused easily in non-Java environments.
The iFlow [19] approach is an information flow analysis, which also uses UML
profiles. Another confidentiality analysis is SecDFD [33]. Similar to our static
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analysis, they analyze the system based on the data flow. However, in contrast
to our approach, there is no coupling to a dynamic runtime analysis. R-PRIS
[26] investigates changes during runtime, which might introduce confidentiality
issues. It uses a runtime model, which is compared to a set of privacy rules.
However, R-PRIS [26] only considers the location to determine the confidential-
ity.

Code-based data flow analysis: Similar to our static analysis, which ana-
lyzes the data flow based on the architectural model, there are approaches that
analyze them on source code. Joana [31] and KeY [2] are two typically represen-
tatives for this. While they do not need architectural models for the analysis,
they need the full source code and are specific to one language. Especially in
Industry 4.0 environments, where multiple different software systems interact,
it might be complicated to apply them.

7 Conclusion and Outlook

We presented an approach to realize dynamic access control policies with a fo-
cus on Industry 4.0 systems that covers virtual and physical access control. The
combination of both access control types has the potential to strengthen the
overall protection of data and physical entities. The approach consists of two
parts. First, there is a static design-time analysis to determine the sensitivity
of exchanged data in the system. Second, a runtime policy decision point con-
tinuously evaluates the dynamic access control policies using the system state,
information about actors as well as precalculated data sensitivity. We demon-
strated that our approach was capable of making appropriate access control
decision in presence of a dynamically changing execution context by applying
the approach to a realistic scenario in Industry 4.0.

In the future, we will consider not only dynamic changes in the system or
environment but also dynamic changes in the policies required to handle new
situations. Adjusting the policies might be necessary because a new situation
arises and there needs to be a policy change in order to keep the system and its
processes at least partially running. This requires detecting upcoming situations
and reacting to them. We will address this challenge as part of the FluidTrust7

project.
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