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High-Throughput Synthesis and Machine Learning Assisted
Design of Photodegradable Hydrogels

Maximilian Seifermann, Patrick Reiser, Pascal Friederich,* and Pavel A. Levkin*

Due to the large chemical space, the design of functional and responsive soft
materials poses many challenges but also offers a wide range of opportunities
in terms of the scope of possible properties. Herein, an experimental
workflow for miniaturized combinatorial high-throughput screening of
functional hydrogel libraries is reported. The data created from the analysis of
the photodegradation process of more than 900 different types of hydrogel
pads are used to train a machine learning model for automated decision
making. Through iterative model optimization based on Bayesian
optimization, a substantial improvement in response properties is achieved
and thus expanded the scope of material properties obtainable within the
chemical space of hydrogels in the study. It is therefore demonstrated that the
potential of combining miniaturized high-throughput experiments with smart
optimization algorithms for cost and time efficient optimization of materials
properties.

1. Introduction

One of the key features material science is often trying to mimic
is the ability of biological systems to respond to external stimuli.
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There is a necessity for an ongoing signal-
response relation between a material and
its environment when full control of com-
plex processes such as the behavior of
cells/tissue is required, the higher the
amount of control the more complex the
relation needs to be.[1] While advantages
in material design are rapid, systems re-
sponding to various stimuli at once or in
a complex manner are scarce and usu-
ally consist of a combination of differ-
ent materials.[2] This multimaterial ap-
proach requires a large amount of ma-
terials to choose from in order to tailor
the exact properties needed. While theo-
retically possible, producing the required
amount of data in traditional fashion is
not feasible, not least due to the enor-
mous consumption of materials required

for this as well as the processing of the sheer amount of data
produced from it.

Throughout the last decade, machine learning (ML)
methods[3] have proven useful in many research areas such
as material science,[4–7] chemistry,[8–11] biology,[12–15] and drug
discovery.[16–19] One major advantage of machine learning meth-
ods is the utilization of the vast amount of data generated in
decades of research to achieve faster progress in science, e.g.
by improving the virtual design of materials,[20] speeding up
optimization processes[21–23] or yielding a better understanding
of hidden relations in data and thus fundamental processes.[24–27]

With continuing progress in ML research, the research speed
of manual lab experiments and thus the generation of new
data is not sufficient any longer to sustain the amounts of data
needed to efficiently make use of new ML methods. Thus,
increasing the throughput of experimental pipelines comes as
a logical consequence and drives the research community to
parallelize experiments in order to speed up data generation.
Due to the increased need of reagents, consumables and effort
to achieve this in a conventional and manual fashion, automated
high-throughput platforms and miniaturization are becoming
of central importance.

Experimental as well as computational HT-techniques are al-
ready commonly used to screen for potential drug candidates
and can help identify potent inhibitors to treat diseases such as
malaria or PVB19 infections.[28,29] Experimental workflows utiliz-
ing high-throughput concepts are becoming more sophisticated,
thriving from simple viability-based readouts to allow more com-
plex insights into biological systems and the fundamental dogma
of biology while maintaining the advantages that came along with
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HT screening.[30–32] Miniaturization is not just a logical conse-
quence of the economical consideration that experiments on a
macroscopic scale consume more time and materials compared
to a microscopical approach, but also a consequence of our own
responsibility as researchers to minimize resource consumption
as much as possible to allow sustainable scientific progression.
Thus, miniaturization techniques need to develop further, away
from the purely pharmacological or biological application, to fit
the need of all research areas, especially the chemistry and ma-
terial science-related ones, to allow resource-conserving ways of
driving science forward.

In this study, we report a high-throughput methodology based
on miniaturized experiments and machine learning for acceler-
ated materials property optimization. We apply it to synthesize
a library of ≈1000 hydrogels with different binary compositions,
based on the combination of acrylic and methacrylic monomers
and crosslinkers. We investigate their respective properties, in
particular photostability. Hydrogels as an exemplary material
class for screening were chosen due to their large chemical
space as well as their promising nature as biocompatible bio-
materials of the future and thus a broad field of potential ap-
plications. Due to the high water content integrated into a poly-
meric network, they strongly resemble tissue and extracellular
matrix´s properties, making them promising candidate materi-
als for biomedical engineering, soft robotics, tissue engineering,
and microfluidics.[33–36] Multimaterials systems of photodegrad-
able hydrogels are of particular interest for encapsulation and
controlled release of cargo, such as drugs or cells, or for the cre-
ation of degradable scaffolds for 3D cell culture.[37]

In previous reports, we investigated inherently photodegrad-
able hydro- and organogels based on methacrylate monomers
and crosslinkers without the need of photosensitizing groups,[38]

which have been proven applicable, e.g., in 3D cell culture.[39]

Since their degradation speed was shown to be highly dependent
on the polarity of the monomers and the crosslinking density, an
evaluation of a variety of combinations can cover a large area of
desired material properties.

We use the droplet microarray (DMA) as a platform for minia-
turized high-throughput experiments.[40] The DMA is an array
of hydrophilic spots on a superhydrophobic background created
by photolithography.[41] It has proven as a potent platform for
miniaturized chemistry and biology.[42,43] Combinatorial library
synthesis through a polymer-based solid-phase synthesis strategy
to achieve a synthesis of various structural motives has been real-
ized and demonstrated for on-chip synthesis and screening.[44,45]

Our experimental synthesis workflow is based on the prepara-
tion of sub-microliter-sized hydrogels in the hydrophilic spots
of DMA.[40] For the analysis of those gels we use a noncontact
method to measure UV-light-induced time-dependent degrada-
tion of soft polymers on a sub-microliter scale through fluores-
cence microscopy. The subsequent application of automated im-
age analysis methods for the detection and measurement of pad
size and intensity reduced manual work of characterization to a
minimum and maximized the achievable throughput.

We demonstrate that by combining miniaturized high-
throughput screening methods with machine learning based
decision-making algorithms, we achieve an optimization of mate-
rials properties in a high-dimensional materials space of ≈13 440
possible hydrogels within 13 experiments, consuming in total

only 0.65 mL of stock solution and less than 170 mg (836 μMol)
of monomer and crosslinker materials. After the initial screen-
ing of 918 materials, the ML-guided approach allows us to ex-
pand the space of achievable combinations of pad size, intensity,
and degradation speed significantly with just additional 79 new
material compositions.

2. Results and Discussion

The experimental workflow established in this work consumes
minimal amounts of materials and is suitable for broad parame-
ter variation while maintaining good comparability of individual
experiments on it, to maximize the data output in a limited set of
experiments for potential use in machine learning. We choose a
combinatorial approach to material synthesis to allow for a high
variety of structural motives and investigate the behavior of the
final material as a function of structural composition. With the
chemical compositions, the solvent, the ratio between monomers
and crosslinkers and the pH value, we have a huge set of inde-
pendently variable parameters to achieve a maximum of different
gel property combinations between the swelling/size and degra-
dation speed.

For the miniaturized preparation of the hydrogel pads a
nanoparticle-coated glass substrate modified with hydrophilic
spots confined by superhydrophobic borders was used. These
droplet microarrays were fabricated by photolithography, using
UV-induced thiol-ene click reaction between surface vinyl-groups
and either mercaptoethanol (hydrophilic) or 1H,1H,2H,2H-
perfluorodecanethiol (PFDT) (hydrophobic). The final array had a
format of 14 columns and 48 rows of hydrophilic 1 mm squares
on a 2.5 cm × 7.5 cm microscopy glass slide. Here we achieve
an experimental density of more than 35 experiments, requiring
just 130 nL solutions each, per square centimeter, more than ten-
fold the density of standard 384 well plates. Additionally, the hy-
drophilic surface also leads to liquids dispensed into every spot to
fully spread across the confined area, leading to a homogeneous
geometry for all droplets even at volumes down to 10 nL.

To set the parameters for the later screening, a pipeline
had to be developed and fully optimized. The critical steps in-
volved: Stock solution preparation, dispensing step, polymeriza-
tion, staining, degradation, and readout (Figure 1). For the prepa-
ration of the sub-microliter-sized droplets a Gyger Certus liquid
dispensing system was used. Monomer stock solutions with low
viscosity were required to guarantee high dispensing accuracy.
To fit this need stock solutions with molarity between 1.66 m
(for Monomers) and 0.58 m (for crosslinkers) were chosen. To set
a parameter for comparison between the different experiments’
monomer and cross-linker solution concentrations were chosen
as a fixed parameter and only the molar ratio between monomer
and crosslinker was varied.

Based on our group’s previous work the model system chosen
for optimization were different copolymers of poly(ethylene
glycol)methacrylate (Mw = 500 Da) (PEGMA 500) and
[2-(methacryloyloxy)-ethyl]dimethyl-(3-sulfopropyl) ammo-
nium hydroxide (SAMA), crosslinked by poly(ethylene gly-
col)dimethacrylate (Mw = 750 Da) (PEGDMA 750) together with
an oxygen scavenger system based on glucose oxidase (2.3 μm)
and glucose (5.8 mm), which has been investigated on the DMA
(Figure 2A).[8] First step to investigate was the polymerization

Small Methods 2023, 2300553 © 2023 The Authors. Small Methods published by Wiley-VCH GmbH2300553 (2 of 11)

 23669608, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

td.202300553 by K
arlsruher Inst F. T

echnologie, W
iley O

nline L
ibrary on [07/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



www.advancedsciencenews.com www.small-methods.com

Figure 1. Schematic depiction of the experimental workflow to synthesize and screen sub-microliter-sized photodegradable hydrogels. For the synthesis
of sub-microliter-sized hydrogel pads we used a droplet microarray, an array of 672 hydrophilic squares (1 × 1 mm) surrounded by superhydrophobic
borders on the area of a standard glass microscopy slide. i) Solutions of initiator (lithium phenyl-2,4,6-trimethylbenzoylphosphinate) and oxygen scav-
enger (glucose oxidase) (30 nL), acrylate/methacrylate monomers (70 nL) and acrylate/methacrylate-based crosslinkers (30 nL) are dispensed into each
spot to reach a final volume of 130 nL. ii) These prepolymerization solutions were sealed to suppress evaporation and then polymerized via photopoly-
merization at 365 nm for 30 min to yield transparent gel pads. iii) The gel pads are swollen in Rhodamine 6G solution to allow reliable visualization. The
image below shows a gel pad of the same type on 1 mm spots, recorded with a digital microscope. iv) Stained gels then undergo cycles of UV irradiation
(200–280 nm) and fluorescence microscopy to monitor their respective degradation courses with respect to their pad size and intensity.

Figure 2. Experiments to adjust and control the parameters for later screening. A) Measured fluorescence area of a series of different hydrogel pads
consisting of poly(ethylene glycol) methacrylate (Mw = 500 Da) (PEGMA) and [2-(methacryloyloxy)-ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide
(SAMA) with different PEGMA:SAMA ratios and different amounts of poly(ethylene glycol) dimethacrylate (Mw = 750 Da) (PEGDMA) as crosslinker
through the course of 20 min irradiation with UVC light. After swelling in Rhodamine 6G overnight, the gels were irradiated with UVC light (11.5 mW
cm−2, 200–280 nm) and measured by fluorescence microscopy successively. Values were acquired by continuous measurements on the same slide.
Error bars show the standard deviation between 10 replicates each. B) Evaluation of gel stability under the influence of rhodamine 6G as a possible
photosensitizer, to make sure the staining does not induce degradability. Nondegrading hydrogels made from poly(ethylene glycol) acrylate (Mw =
480 Da) and different amounts (in mol%) of poly(ethylene glycol) diacrylate (Mw = 700 Da) were irradiated for 10 min after incubation with rhodamine
6G overnight and afterward the change in fluorescence area was compared to check for degradation. Error bars are the standard deviation between 12
replicates. C) Fluorescence microscopy images of nondegradable hydrogels on 1 mm spots stained with rhodamine 6G.
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Figure 3. Example of a randomized layout of 92 different hydrogels with 6 repetitions each. Images were recorded on a fluorescence microscope at
570 nm excitation after 0 s (top) and 1200 s (bottom) irradiation with UVC light. Spots containing hydrogels are fluorescent, spots that did not yield
hydrogel pads show no fluorescence. Magnified regions show a set of 3 different hydrogel pads with their respective border detected via edge detection
as well as the respective fluorescence area and integrated intensity measured for each pad (right).

time. For this, hydrogels with different PEGMA:SAMA molar
ratio (6:1 to 3:4) crosslinked with 10 mol% PEGDMA were poly-
merized on a scale of 130 nL per gel pad. Different intensities
(5.41 – 18.0 mW cm−2) and polymerization times (15 – 30 min)
were investigated to find suitable polymerization time. For each
condition, 2 sets of gels were polymerized, one set was directly
stained with Rhodamine 6G and imaged, the other was irradiated
an additional 2 min with UVC light before being submerged into
Rhodamine 6G solution and imaged. Incompletely polymerized
gels would still contain amounts of monomer, leading to a
stagnation in the degradation curves or even an increase in
size, whereas fully polymerized gels would only experience UV
light-induced degradation, leading to a decrease in size. Suitable
conditions would yield homogeneous pads that respond to
irradiation with a decrease in size. Based on the highest decrease
in pad size during the first 60 s of UVC-induced degradation and
the formation of stable, homogeneous polymer pads, 30 min
polymerization time at 5.41 mW cm−2 were considered optimal
(Figure S3, Supporting Information).

Since the irradiation was performed under oxygen atmo-
sphere, the influence of reactive oxygen species due to the pho-
tosensitizing properties of the dye in the mixture needed to be
evaluated, to make sure all degradation processes were mate-
rial properties and not induced through photosensitizing com-
pounds. Nondegradable polymer compositions that were chem-
ically similar to our model material with the only difference
being the substitution of degradable methacrylate groups by
acrylates were polymerized under the same conditions. These
poly(ethylene glycol) acrylate-co-poly(ethylene glycol) diacrylate
(PEGA-co-PEGDA) hydrogels were stained the same way, by sub-
merging and swelling in an aqueous rhodamine 6G solution, and

the change in size after 15 min irradiation with UVC light com-
pared to the starting value after swelling was measured. The com-
parison of the final value and the end-point showed no significant
decrease in the hydrogel’s fluorescence area, indicating that the
dye did not enable additional degradation mechanisms under the
used conditions, making it suitable for the analysis of degrada-
tion behaviors (Figure 2B).

To test the overall robustness of the experimental workflow
with unknown compositions beyond our characterized model
system, 92 different binary compositions of 23 monomers and
4 crosslinkers ranging from 5 to 15 mol% (w.r.t monomer)
were printed onto a slide according to our standardized protocol
(Figure 3). For every composition, six repetitions were randomly
distributed throughout the slide to obtain information about pro-
cess variances and to avoid unwanted bias effects due to poten-
tial external influences due to substrate inhomogeneities. After
polymerization and swelling, slides were closed and sealed with a
UVC transmitting quartz glass slide on a PDMS frame to prevent
evaporation during the irradiation and imaging steps. Character-
ization of UV degradation started by imaging the slides through
fluorescence microscopy, followed by cycles of irradiation with
UVC light and microscopy imaging. The final images were eval-
uated using an automated image processing protocol and each
droplet’s fluorescence area as well as the integrated pixel inten-
sity were calculated. By this, the degradation curves for these gels
were recorded three times on three different slides and showed
good reproducibility and reliable results (Figure S4, Supporting
Information), enabling the progression to the final screening.
Following our experimental routine, we screened >900 composi-
tions and recorded the respective degradation curves (Figure 4).
More precisely, we performed measurements of 918 hydrogel

Small Methods 2023, 2300553 © 2023 The Authors. Small Methods published by Wiley-VCH GmbH2300553 (4 of 11)

 23669608, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

td.202300553 by K
arlsruher Inst F. T

echnologie, W
iley O

nline L
ibrary on [07/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



www.advancedsciencenews.com www.small-methods.com

Figure 4. Two different sets of sub-microliter-sized hydrogel pads throughout the irradiation process, each row shows the 6 repetitions together with
their relative position on the array (white number, row/column). The graphs show the relative fluorescence area (area within recognized borders) and
integrated fluorescence area (sum of pixel intensity within the recognized border) of each repetition over the course of 20 min UVC irradiation. Values
were calculated as the mean of the individual spot’s values normalized to the starting value of the respective spot. Error bars are the standard deviation
between all replicates. Hydrogels consist of A) 2-hydroxyethyl methacrylate, crosslinked with 8.5 mol% 1,4-butanediol diacrylate and B) 2-hydroxy-3-
phenoxypropyl acrylate crosslinked with 6.5 mol% N,N-methylenebisacrylamide.

compositions with 6 replicates each, yielding a data set with
>66.000 measurement points.

To validate the generated data, additional measurements in mi-
croliter size were performed. Therefore, four different composi-
tions with clear degradation behavior were chosen and prepoly-
merization mixtures of the exact same composition were pre-
pared. Polymer pads of 150 μL were polymerized in triplicates
under the same conditions as on the slide and swollen in PBS
for one week to achieve full swelling. Afterwards, the pads were
irradiated with UVC light to initiate degradation, the liquefied
part was removed and the mass loss over time was recorded.
The relative degradation curves for these pads were compared to
the relative degradation curves of the sub-microliter-sized pads
and showed a reasonable comparability to identify trends in the
high-throughput screening. The microliter-sized gels’ degrada-
tion curves strongly resemble the measured decrease in fluo-
rescence area for the respective gel very well (Figure 5), with a
clear differentiation between rapid and slow degradation. This
upscaled workflow consumed the same time and more materials
for the preparation of four hydrogels with three repetitions com-
pared to the miniaturized screening of >900 materials with six
replicates of 130 nL each.

As a final validation and to demonstrate the potential of
composition-controlled delayed degradation, we prepared a two-
dimensional pattern of three different hydrogel compositions
on a DMA slide (Figure 6). Each hydrogel pad consisted of
130 nL prepolymerization mixture and after polymerization, the
pads were stained with Rhodamine 6G. Upon fluorescence mi-
croscopy no clear difference could be observed and the pattern
was well hidden. Successive irradiation with UV light started
destroying the faster degrading hydrogels, revealing a hidden
pattern after 20 min. Through this, the first part of the mes-
sage became visible, reading “LONG”. Further irradiation leads

to the degradation of the slower degrading hydrogel pads as
well, adding additional information to the message and chang-
ing the meaning to “LONGER” (Figure 6A), while keeping the
nondegradable hydrogels intact.

The hydrogels that make up the frame are chosen to be stable
upon irradiation to ensure the conservation of the information.
By this, we created a chemical data storage that could reveal in-
formation in a time-dependent manner or with respect to envi-
ronmental factors. This could not only be of interest for the de-
velopment of alternative data storage or anti-counterfeiting tech-
niques, but also shows very well the possibilities that open up
with a high-throughput material discovery pipeline. Since such
easy encoding of information is already possible with just three
different materials, more sophisticated systems with higher den-
sity of information can become possible when using an abun-
dance of different materials to use the given space more effi-
ciently. Thus, the method shown in this report has a wide field
of application and might enable even more versatile applications
of both the discovery pipeline as well as the discovered materials
in the future.

In order to increase the efficiency of workflow and to demon-
strate the full potential of the automated platform for materials
design and target-property optimization, we integrated methods
of machine learning into the high-throughput screening process,
sequentially suggesting new compositions and parameters for
hydrogel synthesis. Apart from optimizing (maximize or min-
imize) droplet size, intensity, and UV degradation, we further-
more performed a more general optimization aiming to increase
the range of achievable properties, i.e., initial droplet size and
degradation lifetime. We prepared a dataset that correlates com-
position, i.e., monomer and cross-linker type (plus concentra-
tion) with size and relative intensity of the micro-droplets as a
function of UV exposure time. Each time series was fitted with
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Figure 5. Comparison of degradation curves measured from fluorescence area on sub-microliter scale, fluorescence intensity on sub-microliter scale
and mass loss on microliter scale and their respective exponential fits. A) Four types of hydrogels were investigated: mono-2-(methacryloyloxy)ethyl
phthalate, crosslinked with 6.5 mol% poly(propylene glycol) dimethacrylate, B) poly(ethylene glycol) methyl ether methacrylate, crosslinked with 6.5
mol% glycerol dimethacrylate, C) 4-hydroxybutyl acrylate, crosslinked with 7.5 mol% trimethylolpropane ethoxylate methyl ether diacrylate, and D)
N-(2-acryloyloxyethyl)-N-benzyl-N,N-dimethylammonium chloride, crosslinked with 7.5 mol% trimethylolpropane ethoxylate methyl ether diacrylate.
Fluorescence area and integrated intensity are measured from six different 130 nL sized hydrogel pads on DMA, mass loss was measured from three
150 μL sized hydrogel pads polymerized in a PTFE mold. Values in the graphs are the average of the individual repetition’s values normalized to the
respective repetition value at 0 s irradiation. Error bars show the standard deviation of 6 replicates (nL scale) or 3 replicates (μL scale).

Figure 6. Combination of three different hydrogel compositions with different degradation speeds to create a multilayered data storage. A) Pattern
created by polymerization of three different hydrogel types: slow-degradable hydrogel based on 4-hydroxybutyl acrylate and N,N-methylenebisacrylamide
(Slow), a slightly faster degradable hydrogel made of furfuryl methacrylate and pentaerythritol triacrylate (Medium) and a rapidly degradable hydrogel
consisting of poly(ethylene glycol)methyl ether acrylate (Mw = 500 Da) and glycerol dimethacrylate (Fast). Prior to sufficient irradiation no pattern is
visible, after 20 min the word “LONG” becomes visible due to destruction of the fast degradable hydrogels. After further irradiation the slowly degrading
hydrogels decompose as well, changing the message to “LONGER”. Images have been edited with Adobe Photoshop Lightroom Classic to increase
Contrast for better visualization. B) Corresponding degradation curves of the nondegradable composition, slow degrading hydrogels and the rapidly
degrading hydrogels. Values shown are measured in a miniaturized screening process and calculated as an average of 6 repetitions normalized to their
respective starting value. Error bars shown represent the standard deviation between these six repetitions.
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Figure 7. Distribution of all the different hydrogel properties (intensity/size) versus the degradation lifetime before and after Bayesian optimization.
2D histogram of the square root of the A) initial measured average intensity or C) initial size versus the fitted log-lifetime of the hydrogel under UV-
irradiation. The 2D histogram after Bayesian optimization of the square root of the B) initial measured average intensity or D) initial size versus the fitted
log-lifetime of the hydrogel. Brighter colors represent higher density indicated by a colorbar legend. On the left, the distributions of the initial, randomly
selected hydrogels are shown. On the right, the distribution of experimentally measured suggestions from Bayesian optimization (both multiobjective
and extremal property search) are shown (with the initial distributions in the background). Red circles in (B) and (D) highlight areas of high lifetime and
intensity with multiple compositions.

an exponential decay curve (Equation 1) with initial size/intensity
N0 and mean lifetime.

N (t) = N0 e−t∕𝜏 (1)

To adjust the distribution of target values for ML models, we
chose the square root of the initial size and the intensity N0 of
the droplet as well as the natural logarithm of the lifetime 𝜏 as
learnable targets. Additionally, we clipped the lifetime at 𝜏 ∈ [25 s,
20′000] to be within a reasonable value range matching the exper-
imental resolution. The distribution for the randomly generated
≈900 compositions of the high throughput screening is shown
in Figure 7A,C. Further statistical analysis of the measured val-
ues per monomer or cross-linker is shown in Figure S1, Sup-
porting Information, identifying well-performing cross-linker or
monomer classes. We trained two multitask Gaussian process re-
gression models (GPR) to predict (a) the combined square root
intensity plus log lifetime, and (b) the square root size plus log
lifetime from given input compositions. Details about the ML
methods are given in Section 4.11. A plot of the prediction of the
GPR versus the ground truth can be found in the SI in Figure S2,
Supporting Information.

The currently used Gaussian Process models predict hydro-
gel properties based on monomer and cross-linker class labels
and their respective concentration, which implies that they can
only be used on a finite set of compounds. In principle, the in-
put representation can be based on molecular features and struc-
tural information, rather than categorical compounds, and there-
fore enable predictions also on unseen monomers. While data re-

quirements for this approach are higher, it would allow for virtual
materials design and exploration of new monomers and cross-
linkers, which is beyond the scope of this work.

With the Gaussian Process trained on categorical input repre-
sentations as a surrogate model, we conducted batched Bayesian
optimization (BO) cycles to suggest new synthesis parameters.
With an expected improvement acquisition function, we max-
imized the single objective of highest intensity (or size) and
longest lifetime. For combined optimization, we define the
weighted sum of normalized intensity (or size) and normalized
lifetime as objective (normalization constants are the largest val-
ues found in the initial screen, details can be found in methods).
Additionally, we ran a BO experiment to increase the expected
hypervolume of the target space, i.e., find compositions with ex-
tremal properties, e.g., maximal intensity and minimal lifetime.
The distribution of the measured properties of the newly sug-
gested hydrogels is shown in comparison to the high-throughput
screening in Figure 7B,D. Overall we ran two batched BO steps
with in total 79 newly suggested hydrogel compositions. In the
initial randomized high-throughput screening most monomer
to cross-linker combinations were tested, which is why only few
new combinations were suggested and mostly the cross-linker
concentration and monomer composition parameters were op-
timized by the BO approach. We find a substantially increased
maximum intensity in Figure 7D compared to 7C at all possi-
ble lifetimes, while the maximal droplet size is intrinsically lim-
ited by the overall printed volume and the area of pad-size on
the substrate, not allowing for much further maximization. A
bright spot indicates multiple compositions of high lifetime and
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intensity as the result of the converged BO suggestions, marked
by a red circle in Figure 7B,D. Moreover, additional compositions
in previously underexplored regions are found, e.g. large and fast
degrading droplets, upper left corner of Figure 7A.

3. Summary and Conclusion

Droplet microarray is a platform which was previously proven
to be very versatile for chemical synthesis, cell culture, or drug
screening. In this work, we demonstrated the possibility to ex-
pand the scope of DMA setups into a smart, miniaturized, high
throughput materials discovery platform. We transitioned from
small libraries with known behavior to large chemical spaces
including thousands of different, unknown polymeric composi-
tions. The versatility of the platform allowed these adjustments to
the experimental workflow to fit a broad scope of different func-
tionalities, enabling the high-throughput synthesis and analysis
of various different materials while maintaining a minimal mate-
rial consumption. The synthesis and screening of the first 918 dif-
ferent compositions with six replicates (for a total of 5508 experi-
ments) was performed in a short time window of one week while
consuming only 551 μL of highly diluted monomer stock solu-
tions. For comparison, the validation experiment of four compo-
sitions in triplicates consumed roughly 2.5 times the amount of
material needed for the whole miniaturized screening, while tak-
ing already more time to just swell the larger gel pads than the
whole screening pipeline. To perform the whole screening within
this scale, the total material consumption would be 574 times
higher (316 mL). This shows the advantages of miniaturization
and parallelization compared to conventional analysis methods
and establishes the DMA once again as a very versatile and appli-
cable platform. The automatic experiment platform for hydrogels
can be further combined with Bayesian optimization to further
optimize target properties of interest or to explore and expand
the space of achievable materials properties. We demonstrated
that Bayesian optimization can find hydrogel compositions that
increase intensity and lifetime substantially beyond what was
found in the initial random screening process.

Controlling photodegradation lifetime of soft materials is of in-
terest for different applications, such as the design of anisotropi-
cally degrading scaffolds for 3D cell culture. The coverage of dif-
ferent property combinations achieved in the initial screening
(Figure 7A/C) was further expanded after the optimization step,
thus gaining access to new subsets of materials with useful prop-
erties, such as low lifetime and high initial intensity (Figure 7B).
Herein discovered materials with comparable size and therefore
comparable swelling behavior can be used for the fabrication of
multimaterial structures that keep their structural features inde-
pendent of their swelling degree. Thus, combinations of these
materials with matching properties can easily be used for en-
cryption of information into hidden patterns, only visible upon
irradiation (Figure 6), as data storage, as a degradable scaffold,
or as hydrogel-based photoresists for lithography. Furthermore,
insights into their UV-driven degradation might allow the use
of methacrylates as naturally decomposing polymers upon expo-
sure to sunlight.

Beyond that, with the possibility to reliably produce materials
in the sub-microliter range, one can in principle gain access to
any other materials property which is measurable in a minia-

turized setup. Smart high-throughput optimization of composi-
tion and synthesis parameters, enables the design of materials
with, e.g., tailormade biocompatibility through measurement of
cell viability assays, mechanical properties through integration
of miniaturized mechanosensors, or drug/biomolecule loading
capacities through characterization by fluorescence microscopy.
Accessing more and more research areas with miniaturized ap-
proaches coupled to machine learning algorithms is one of the
most promising ways to achieve sustainable and future-oriented
research practices.

4. Experimental Section
Droplet Microarray: The preparation of Droplet Microarrays was done

according to a patented procedure.[46] For the preparation uncoated Nex-
terion glass slides (Schott AG, Mainz, Germany) were used. The glass was
activated prior to use by 10 min ozone treatment in an UVO-Cleaner (Jet-
light Co. Inc., Irvine, CA). Afterward the slides were coated with a solution
of AEROSIL 200 (Evonik Industries AG, Essen, Germany), trimethoxyvinyl-
silane (VWR International, Radnor, PA), and hydrochloric acid (VWR Inter-
national, Radnor, PA) in ethanol (VWR International, Radnor, PA). Slides
were cured at 150 °C for an hour and then washed with ethanol. For the
creation of hydrophobic or hydrophilic regions slides were covered with a
solution or 1H,1H,2H,2H-perfluorodecanethiol in isopropanol or mercap-
toethanol in ethanol/water (1:1) respectively, and irradiated for 90 s using
a UVA Cube 2000 (Dr. Hönle AG, Gilching, Germany).

Monomers: The Monomers used in the library synthesis were chosen
to cover diverse different functionalities to achieve both structurally very
similar and very different polymeric compositions. methacrylamide, hy-
droxypropyl methacrylate, diacetone acrylamide, N,N-dimethylacrylamide,
hydroxypropyl acrylate, N-(3-dimethylaminopropyl)methacrylamide, 1-
(acryloyloxy)-3-(methacryloyloxy)-2-propanol, methoxyethyl acrylate,
3-chloro-2-hydroxypropyl methacrylate, diethylene glycol monomethyl
ether methacrylate, N-(butoxymethyl)acrylamide, 2-methoxyethyl
methacrylate, tetrahydrofurfuryl acrylate, 2-(diethylamino)ethyl
acrylate, 2-hydroxy-3-phenoxypropyl acrylate, 4-hydroxybutyl acry-
late, 2-acrylamido-2-methylpropanesulfonic acid, 2-(dimethyl)ethyl
acrylate, glycerol dimethacrylate, mono(2-acryloyloxyethyl) succi-
nate, 3-Sulfopropyl acrylate potassium salt, 4-acryloylmorpholine,
mono-2-(methacryloyloxy)ethyl phtalate, N-(2-acryloyloxyethyl)-N-
benzyl-N,N-dimethylammonium chloride, alpha-methylene-gamma-
butyrolactone, N-methylmethacrylamide, 2-(methacryloyloxy)ethyl
2-(trimethylammonio)ethyl phosphate, 2-morpholinoethyl
methacrylate, furfuryl methacrylate, N-isopropylmethacrylamide,
methacrolein, N-(3-aminopropyl)methacrylamide hydrochloride, 4-
[(3-methacrylamidopropyl)dimethylamonio]butane-1-sulfonate, N-
(3-dimethylaminopropyl)methacrylamide were purchased from TCI
(Tokyo, Japan). 1,12-dodecandiol dimethacrylate was purchased from
abcr GmbH(Karlsruhe, Germany), 2-aminoethyl methacrylate hy-
drochloride, pentaerythritol triacrylate, diethylene glycol diacrylate,
N,N-dimethylacrylamide, methyl methacrylate, propargyl methacry-
late, 2-hydroxyethyl acrylate, cyclohexyl methacrylate was purchased
from Thermo Fischer Scientific Inc. (Waltham, MA), ethylene glycol
dimethacrylate, tri(ethylene glycol) dimethacrylate, di(ethylene gly-
col)dimethacrylate, poly(ethylene glycol) dimethacrylate (Mn ∼ 750 Da),
poly(propylenglykol)dimethacrylate, trimethylolpropane trimethacry-
late, poly(ethylene glycol)diacrylate (Mn ∼ 700 Da), poly(ethylene
glycol)diacrylate (Mn ∼ 575 Da), poly(ethylene glycol) diacrylate (Mn ∼

250 Da), 1,4-butanediol diacrylate, glycerol 1,3-diglycerolate diacrylate,
trimethylolpropane ethoxylate (1 EO/OH) methyl ether diacrylate, N,N′-
methylenebisacrylamide, N,N′-(1,2-dihydroxyethylene)bisacrylamide,
acrylamide, N-isopropylacrylamide, poly(ethylene glycol)methyl ether
acrylate (Mn ∼ 480 Da), poly(ethylene glycol)methyl ether methacry-
late (Mn ∼ 500 Da), glycidyl methacrylate, 2-hydroxyethyl methacry-
late, lauryl methacrylate, butyl methacrylate, ferrocenyl methacrylate,
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2-(dimethylamino)ethyl methacrylate, isobornyl methacrylate,
poly(ethylene glycol) methyl ether methacrylate (Mn = 300 Da), 3-
sulfopropyl methacrylate potassium salt, isodecyl acrylate, butylacrylate,
octadecyl acrylate, methyl acrylate, [2-(methacryloyloxy)ethyl]-dimethyl-
(3-sulfopropyl)-ammonium hydroxide and methacrylic acid were bought
from Sigma Aldrich (St. Louis, MO).

Printing: Monomers were purified from inhibitors prior to use by pass-
ing over a column of basic aluminum oxide (Alfa Aesar, Ward Hill, MA,
USA). For dispensing a Certus Flex (Fritz Gyger AG, Gwatt, Switzerland)
was used, viscosity of printing solutions was adjusted and calibrated to
assure reproducible and precise printing.

In a typical printing procedure 130 nL PBS (Thermo Fisher Scientific
Inc., Waltham, MA) were dispensed to the outer frame of the droplet mi-
croarray to make sure every gel containing spot will be surrounded by
other gel-containing spots or humidifying rows containing PBS. Then 30
nL lithium phenyl-2,4,6-trimethylbenzoylphosphinate (Sigma-Aldrich, St.
Louis, MO) solution (5 mg mL−1) in PBS, supplemented with glucose
oxidase (40 μm) (VWR International, Radnor, PA) and glucose (0.1 m)
(Sigma-Aldrich, St. Louis, MO) were dispensed into the inner spots. 60
nL of monomer solution (1.66 m) and 30 nL cross-linker solution (0.581
m) in PBS or DMF were added subsequently. For larger libraries, the slide
was stored on a metal cooling plate at 0 °C during the exchange of stock
solutions to fully suppress evaporation-induced concentration changes.

Polymerization: After printing the slides containing prepolymerization
mixture were transferred into a petri dish containing 2 mL PBS in the bot-
tom, covered with a quartz glass plate, and irradiated for 30 min with a UV
LED (Opsytec, Ettlingen, Germany) at 5.41 mW cm−2. After the polymer-
ization Slides were taken out of the dish and submerged in a solution of
Rhodamine 6G (10 mg L−1) in PBS for 16 h.

Photodegradation on Sub-Microliter Scale: Swollen hydrogel pads were
taken out of solution, excess solvent was carefully removed and the slide
was sealed with a PDMS frame stuck to a quartz glass slide. The sealed
slide was irradiated with the quartz glass slide pointing towards the light
source. As UV source a UVA Cube 2000 (Dr. Hönle AG, Gilching, Ger-
many) was used (11.45 mW cm−2). and with a regular frequence imaged
by fluorescence microscopy on a Keyence BZ-X800 with a 2X magnifica-
tion lense (Keyence Co., Ösaka, Japan) in the TRITC channel (Excitation
544 nm, Emission 570 nm) at 4 ms excitation time. The recorded images
were segmented and analyzed to determine the fluorescence area and the
integrated intensity of every single pad.

Preparation of Prepolymerization Mixtures on Microliter Scale: To a so-
lution of monomer (0.89 m) and crosslinker (from 5 to 15 mol% w.r.t.
Monomer) in PBS and DMF, LAP was added (1.13 mg m L−1). Nitrogen
was bubbled through the mixture for 15 min to remove oxygen, then the
Prepolymerization mixture was ready to use for the following experiments.

Photodegradation on Microliter Scale: The hydrogels for this were pre-
pared by dispensing 150 μL prepolymerization mixture into an PTFE mold,
which was then covered with a quartz glass plate and irradiated accord-
ing to the polymerization protocol. The gel pads were taken out of the
mold and submerged in PBS for 7 days to achieve full swelling. Samples
were taken out and dried of excess water using tissues. The samples were
irradiated in a close petri dish with 2 mL PBS in the bottom under the
same conditions as for the sub-microliter degradation studies. After spe-
cific time intervals, the samples were taken out, liquefied parts were re-
moved again and the sample was weighed. The mass change was mea-
sured over 20 min and the mass was normalized to the starting mass to
generate the course of degradation. For every measurement, three inde-
pendent repetitions were performed.

Preparation of Irradiation Time-dependent Patterns: Prepolymerization
mixtures for the three different compositions were prepared and dis-
pensed onto a DMA slide. Each spot confined a volume of 130 nL pre-
polymerization mixture. The polymerization was done according to the
Polymerization protocol and the slides were afterward submerged in Rho-
damine 6G solution in PBS (10 mg L−1). After 24 h, the slides were taken
out, excess water was removed with a tissue and the slides were imaged
with a fluorescence microscope (1.25 ms excitation time). Slides were irra-
diated in a petri dish sealed with a quartz glass plate for 10 min using UVC
light and afterward washed by carefully immersing in PBS for a moment.

Slides were taken out, excess water was removed with a tissue and the
slides were imaged again. This was repeated for every desired irradiation
time.

Intensity Measurements: UVA- or UVC intensities of all lamps were
measured with a UV-Meter (Dr. Hönle AG, Gräfelfing, Germany) using an
UVA- or UVC-sensor respectively.

Image Analysis: Fluorescence microscopy images were evaluated
with an in-house developed software tool for automatic droplet grid-
and edge-detection, featuring a graphical user interface for supervision
and adjustment. The code is available at https://github.com/aimat-lab/
microdroplet_segmentation. For edge detection, a sobel filter with median
and gaussian blurring from scikit-image was chosen.[47,48] After droplet
segmentation with a two-label watershed algorithm within each array box
on the sobel elevation map,[49–51] the pixel size and integrated gray-scale
intensities of each droplet were recorded.

Machine Learning: Each time series of the UV degradation curve was
fitted with an exponential function with 2 parameters, from which the la-
bels of lifetime and initial size and intensity were obtained. The data for
the training of the ML models by taking the square root of initial size
and intensity and the logarithm of the lifetime were prepared. Addition-
ally, the lifetime at 𝜏 ∈ [25 s, 20′000 s] was clipped. A multitask Gaussian
process regressor (GPR) as implemented in GPyTorch[52] to train on a ran-
dom seven-fold split was used. The output space of the multi-task GPR is
4-dimensional, i.e., initial square root intensity and size as well as their
respective log-lifetimes. Mixed inputs of two categorical class labels for
monomer and crosslinker and a continuous parameter of their molar con-
centrations were used. Alternatively class labels can be mapped into one-
hot encoded monomer and cross-linker vectors of combined 75 dimen-
sions. Fit results are summarized in Figure S2, Supporting Information.

Bayesian Optimization: Batched Bayesian Optimization with both the
Ax[53] and BOTorch[54] library in a single and multitarget configuration was
performed. For the single task setting, the objective was set to be the sum
or difference of normalized lifetime and normalized initial size (or average
intensity). For the mult-label settings, the objective was set to maximize
the space of all labels. For BOTorch a MixedSingleTaksGP with SobolQMC-
NormalSampler and qExpectedImprovement for optimization in the single
target setting were chosen. A list of MixedSingleTaksGP with qNoisyExpect-
edHypervolumeImprovement in the multitarget setting. For Ax, the Service
API was used and skipped the initial suggestion. All predictions of the dif-
ferent approaches were combined for the next experimental measurement
round.

Creation of Figures: The creation of Figure 1 and the table of contents
Figure was done with Biorender.com.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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