5 research outputs found

    Selective and Wash‐Resistant Fluorescent Dihydrocodeinone Derivatives Allow Single‐Molecule Imaging of Ό‐Opioid Receptor Dimerization

    Get PDF
    Ό‐Opioid receptors (Ό‐ORs) play a critical role in the modulation of pain and mediate the effects of the most powerful analgesic drugs. Despite extensive efforts, it remains insufficiently understood how Ό‐ORs produce specific effects in living cells. We developed new fluorescent ligands based on the Ό‐OR antagonist E‐p‐nitrocinnamoylamino‐dihydrocodeinone (CACO), that display high affinity, long residence time and pronounced selectivity. Using these ligands, we achieved single‐molecule imaging of Ό‐ORs on the surface of living cells at physiological expression levels. Our results reveal a high heterogeneity in the diffusion of Ό‐ORs, with a relevant immobile fraction. Using a pair of fluorescent ligands of different color, we provide evidence that Ό‐ORs interact with each other to form short‐lived homodimers on the plasma membrane. This approach provides a new strategy to investigate Ό‐OR pharmacology at single‐molecule level

    Selective and wash‐resistant fluorescent dihydrocodeinone derivatives allow single‐molecule imaging of Ό‐opioid receptor dimerization

    Get PDF
    Ό‐Opioid receptors (Ό‐ORs) play a critical role in the modulation of pain and mediate the effects of the most powerful analgesic drugs. Despite extensive efforts, it remains insufficiently understood how Ό‐ORs produce specific effects in living cells. We developed new fluorescent ligands based on the Ό‐OR antagonist E‐p‐nitrocinnamoylamino‐dihydrocodeinone (CACO), that display high affinity, long residence time and pronounced selectivity. Using these ligands, we achieved single‐molecule imaging of Ό‐ORs on the surface of living cells at physiological expression levels. Our results reveal a high heterogeneity in the diffusion of Ό‐ORs, with a relevant immobile fraction. Using a pair of fluorescent ligands of different color, we provide evidence that Ό‐ORs interact with each other to form short‐lived homodimers on the plasma membrane. This approach provides a new strategy to investigate Ό‐OR pharmacology at single‐molecule level

    Filamin A organizes γ‑aminobutyric acid type B receptors at the plasma membrane

    Get PDF
    The γ-aminobutyric acid type B (GABA(B)) receptor is a prototypical family C G protein-coupled receptor (GPCR) that plays a key role in the regulation of synaptic transmission. Although growing evidence suggests that GPCR signaling in neurons might be highly organized in time and space, limited information is available about the mechanisms controlling the nanoscale organization of GABA(B) receptors and other GPCRs on the neuronal plasma membrane. Using a combination of biochemical assays in vitro, single-particle tracking, and super-resolution microscopy, we provide evidence that the spatial organization and diffusion of GABA(B) receptors on the plasma membrane are governed by dynamic interactions with filamin A, which tethers the receptors to sub-cortical actin filaments. We further show that GABA(B) receptors are located together with filamin A in small nanodomains in hippocampal neurons. These interactions are mediated by the first intracellular loop of the GABA(B1) subunit and modulate the kinetics of Gα(i) protein activation in response to GABA stimulation

    Untersuchung von dynamischen Prozessen von prototypischen Klasse A GPCR's durch EinzelmolekĂŒlmikroskopie

    Get PDF
    In this work, two projects were pursued. In the first project, I investigated two different subtypes of opioid receptors, which play a key role as target for analgesia. A set of subtype specific fluorescent ligands for ÎŒ opioid receptor (MOR) and ÎŽ opioid receptor (DOR) was characterised and used to gain insights into the diffusion behaviour of those receptors. It was shown that the novel ligands hold photophysical and pharmacological properties making them suitable for single-molecule microscopy. Applying them to wild-type receptors expressed in living cells revealed that both sub-types possess a heterogeneous diffusion behaviour. Further- more, the fluorescent ligands for the MOR were used to investigate homodomerisation, a highly debated topic. The results reveal that only ≈ 5 % of the receptors are present as homodimers, and thus the majority is monomeric. G-protein coupled receptors (GPCRs) play a major role as drug targets. Accordingly, understanding the activation process is very important. For a long time GPCRs have been believed to be either active or inactive. In recent years several studies have shown, that the reality is more complex, involving more substates. [1, 2, 3, 4] In this work the α 2A AR was chosen to investigate the activation process on a single-molecule level, thus being able to distinguish also rare or short-lived events that are hidden in ensemble mea- surements. With this aim, the receptor was labelled intracellular with two fluorophores using supported membranes. Thus it was possible to acquire movies showing qualita- tively smFRET events. Unfortunately, the functionality of the used construct could not be demonstrated. To recover the functionality the CLIP-tag in the third intracellular loop was replaced successfully with an amber codon. This stop codon was used to insert an unnatural amino acid. Five different mutants were created and tested and the most promising candidate could be identified. First ensemble FRET measurements indicated that the functionality might be recovered but further improvements would be needed. Overall, I could show that single-molecule microscopy is a versatile tool to investigate the behaviour of typical class A GPCRs. I was able to show that MOR are mostly monomeric under physiological expression levels. Furthermore, I could establish intra- cellular labelling with supported membranes and acquire qualitative smFRET events.In dieser Arbeit wurden zwei Projekte verfolgt. Im ersten Projekt wurden zwei Subtypen der Opioidrezeptoren untersucht, die eine wichtige Rolle fĂŒr die Wirksamkeit von Analgetika spielen. Ein Set von subtypspezifischen fluoreszierenden Liganden fĂŒr den MOR und den DOR wurde charakterisiert und eingesetzt, um Einblicke in das Diffuionsverhalten der Rezeptoren zu gewinnen. Es konnte gezeigt werden, dass die neuartigen Liganden sowohl photophysikalische als auch pharmakologische Eigenschaften besitzen, die sie fĂŒr die EinzelmolekĂŒlmikroskopie interessant machen. Versuche mit Opioidrezeptoren, die in lebenden Zellen exprimiert werden, zeigten, dass beide Subtypen heterogenes Diffuionsverhalten aufweisen. Des Weiteren wurden die fluoreszierenden Liganden fĂŒr den MOR genutzt um Homodimerisierung zu untersuchen, da dies ein kontrovers diskutiertes Thema ist. Die Ergebnisse zeigen, dass lediglich ≈ 5% der Rezeptoren als Homodimere vorliegen und der Großteil monomerisch ist. GPCRs sind besonderem Interesse, weil sie Angriffspunkt vieler Medikamente sind. Deshalb ist es wichtig ihren Aktivierungsmechanismus besser zu verstehen. Lange Zeit wurde angenommen, dass GPCRs entweder aktiv oder inaktiv sind. Neuere Studien zeigten jedoch, dass die RealitĂ€t komplexer ist und der Prozess Zwischenschritte involviert. [1, 2, 3, 4] In dieser Arbeit wurde der α 2A Adrenorezeptor als prototypischer Klasse A GPCR gewĂ€hlt, um den Aktivierungsprozess auf EinzelmolekĂŒllevel zu untersuchen. Durch die Betrachtung einzelner Rezeptoren ist es möglich auch seltene oder sehr kurzlebige Ereignisse zu unterscheiden, die in Kollektivmessungen untergehen. Um dies zu erreichen wurde der Rezeptor erfolgreich intrazellulĂ€r mit zwei Fluorophoren markiert. Dies gelang durch die Herstellung von „supported membranes", also Zellmembranen die auf einem ObjekttrĂ€ger fixiert wurden. Dadurch war es möglich Videos aufzunehmen, die EinzelmolekĂŒl-FRET-Ereignisse zeigen. Jedoch gelang es nicht zu zeigen, dass der Rezeptor als Ganzes noch funktional war. Um einen funktionalen Rezeptor zu erhalten, wurde das CLIP-Tag in der dritten intrazellulĂ€ren Schleife erfolgreich durch ein Stopcodon ersetzt, welches fĂŒr eine nicht kanonische AminosĂ€ure kodierte. FĂŒnf verschiedene Mutanten wurden kloniert und getestet, wobei der vielversprechendste Mutant identifiziert werden konnte. Erste FRET-Kollektivmessungen deuten darauf hin, dass dieser Mutant funktional sein könnte. Jedoch sind weitere Verbesserungen nötig. Insgesamt konnte ich zeigen, dass EinzelmolekĂŒlmikroskopie vielseitige Möglichkeiten bietet um das Verhalten von GPCRs zu untersuchen. Ich konnte nachweisen, dass MOR unter physiologischen Bedingungen hauptsĂ€chlich als Monomere vorliegen. Des Weiteren konnte ich Dank supported membranes die Markierung durch Farbstoffe im Intrazellularbereich etablieren und qualitative smFRET Ereignisse aufnehmen

    Literaturverzeichnis

    No full text
    corecore