28 research outputs found

    The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.

    Get PDF
    Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex

    Scaling the state: Egypt in the third millennium BC

    Get PDF
    Discussions of the early Egyptian state suffer from a weak consideration of scale. Egyptian archaeologists derive their arguments primarily from evidence of court cemeteries, elite tombs, and monuments of royal display. The material informs the analysis of kingship, early writing, and administration but it remains obscure how the core of the early Pharaonic state was embedded in the territory it claimed to administer. This paper suggests that the relationship between centre and hinterland is key for scaling the Egyptian state of the Old Kingdom (ca. 2,700-2,200 BC). Initially, central administration imagines Egypt using models at variance with provincial practice. The end of the Old Kingdom demarcates not the collapse, but the beginning of a large-scale state characterized by the coalescence of central and local models

    Real-time observations of lithium battery reactions-operando neutron diffraction analysis during practical operation.

    Get PDF
    充放電しているリチウム電池の内部挙動の解析に成功―中性子線を用い非破壊かつリアルタイム観測により実現―. 京都大学プレスリリース. 2016-07-06.Among the energy storage devices for applications in electric vehicles and stationary uses, lithium batteries typically deliver high performance. However, there is still a missing link between the engineering developments for large-scale batteries and the fundamental science of each battery component. Elucidating reaction mechanisms under practical operation is crucial for future battery technology. Here, we report an operando diffraction technique that uses high-intensity neutrons to detect reactions in non-equilibrium states driven by high-current operation in commercial 18650 cells. The experimental system comprising a time-of-flight diffractometer with automated Rietveld analysis was developed to collect and analyse diffraction data produced by sequential charge and discharge processes. Furthermore, observations under high current drain revealed inhomogeneous reactions, a structural relaxation after discharge, and a shift in the lithium concentration ranges with cycling in the electrode matrix. The technique provides valuable information required for the development of advanced batteries
    corecore