1,223 research outputs found

    Biodegradation of phenoxyacetic acid in soil by Pseudomonas putida PP0301(pR0103), a constitutive degrader of 2, 4–dichlorophenoxyacetate

    Full text link
    The efficacy of using genetically engineered microbes (GEMs) to degrade recalcitrant environmental toxicants was demonstrated by the application of Pseudomonas putida PP0301(pR0103) to an Oregon agricultural soil amended with 500 u.g/g of a model xenobiotic, phenoxyacetic acid (PAA). P. putida PP0301(pR0103) is a constitutive degrader of 2, 4–dichlorophenoxyacetate (2, 4–D) and is also active on the non–inducing substrate, PAA. PAA is the parental compound of 2, 4–dichlorophenoxyacetic acid (2, 4–D) and whilst the indigenous soil microbiota degraded 500 ng/g 2, 4–D to less than 10 J–g/g, PAA degradation was insignificant during a 40–day period. No significant degradation of PAA occurred in soil inoculated with the parental strain P. putida PP0301 or the inducible 2, 4–D degrader P. putida PP0301(pR0101). Moreover, co–amendment of soil with 2, 4–D and PAA induced the microbiota to degrade 2, 4–D; PAA was not degraded. P. putida PP0301–(pR0103) mineralized 500–Μg/g PAA to trace levels within 13 days and relieved phytotoxicity of PAA to Raphanus sativus (radish) seeds with 100% germination in the presence of the GEM and 7% germination in its absence. In unamended soil, survival of the plasmid–free parental strain P. putida PP0301 was similar to the survival of the GEM strain P. putida PP0301(pR0103). However, in PAA amended soil, survival of the parent strain was over 10 000–fold lower (< 3 colony forming units per gram of soil) than survival of the GEM strain after 39 days.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75471/1/j.1365-294X.1992.tb00160.x.pd

    Exciton spectroscopy of hexagonal boron nitride using non-resonant x-ray Raman scattering

    Full text link
    We report non-resonant x-ray Raman scattering (XRS) measurements from hexagonal boron nitride for transferred momentum from 2 to 9 A˚1\mathrm{\AA}^{-1} along directions both in and out of the basal plane. A symmetry-based argument, together with real-space full multiple scattering calculations of the projected density of states in the spherical harmonics basis, reveals that a strong pre-edge feature is a dominantly Y10Y_{10}-type Frenkel exciton with no other \textit{s}-, \textit{p}-, or \textit{d}- components. This conclusion is supported by a second, independent calculation of the \textbf{q}-dependent XRS cross-section based on the Bethe-Salpeter equation

    Developing Personalized Sensorimotor Adaptability Countermeasures for Spaceflight

    Get PDF
    Astronauts experience sensorimotor disturbances during their initial exposure to microgravity and during the re-adaptation phase following a return to an Earth-gravitational environment. Interestingly, astronauts who return from spaceflight show substantial differences in their abilities to readapt to a gravitational environment. The ability to predict the manner and degree to which individual astronauts would be affected would improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. In this paper we will be presenting results from our ground-based study that show how behavioral, brain imaging and genomic data may be used to predict individual differences in sensorimotor adaptability to novel sensorimotor environments. This approach will allow us to better design and implement sensorimotor adaptability training countermeasures against decrements in post-mission adaptive capability that are customized for each crewmember's sensory biases, adaptive capacity, brain structure, functional capacities, and genetic predispositions. The ability to customize adaptability training will allow more efficient use of crew time during training and will optimize training prescriptions for astronauts to ensure expected outcomes

    Maximal LpL^p-regularity for stochastic evolution equations

    Full text link
    We prove maximal LpL^p-regularity for the stochastic evolution equation \{{aligned} dU(t) + A U(t)\, dt& = F(t,U(t))\,dt + B(t,U(t))\,dW_H(t), \qquad t\in [0,T], U(0) & = u_0, {aligned}. under the assumption that AA is a sectorial operator with a bounded HH^\infty-calculus of angle less than 12π\frac12\pi on a space Lq(O,μ)L^q(\mathcal{O},\mu). The driving process WHW_H is a cylindrical Brownian motion in an abstract Hilbert space HH. For p(2,)p\in (2,\infty) and q[2,)q\in [2,\infty) and initial conditions u0u_0 in the real interpolation space \XAp we prove existence of unique strong solution with trajectories in L^p(0,T;\Dom(A))\cap C([0,T];\XAp), provided the non-linearities F:[0,T]\times \Dom(A)\to L^q(\mathcal{O},\mu) and B:[0,T]\times \Dom(A) \to \g(H,\Dom(A^{\frac12})) are of linear growth and Lipschitz continuous in their second variables with small enough Lipschitz constants. Extensions to the case where AA is an adapted operator-valued process are considered as well. Various applications to stochastic partial differential equations are worked out in detail. These include higher-order and time-dependent parabolic equations and the Navier-Stokes equation on a smooth bounded domain \OO\subseteq \R^d with d2d\ge 2. For the latter, the existence of a unique strong local solution with values in (H^{1,q}(\OO))^d is shown.Comment: Accepted for publication in SIAM Journal on Mathematical Analysi

    Greater sexual reproduction contributes to differences in demography of invasive plants and their noninvasive relatives

    Get PDF
    An understanding of the demographic processes contributing to invasions would improve our mechanistic understanding of the invasion process and improve the efficiency of prevention and control efforts. However, field comparisons of the demography of invasive and noninvasive species have not previously been conducted. We compared the in situ demography of 17 introduced plant species in St. Louis, Missouri, USA, to contrast the demographic patterns of invasive species with their less invasive relatives across a broad sample of angiosperms. Using herbarium records to estimate spread rates, we found higher maximum spread rates in the landscape for species classified a priori as invasive than for noninvasive introduced species, suggesting that expert classifications are an accurate reflection of invasion rate. Across 17 species, projected population growth was not significantly greater in invasive than in noninvasive introduced species. Among five taxonomic pairs of close relatives, however, four of the invasive species had higher projected population growth rates compared with their noninvasive relative. A Life Table Response Experiment suggested that the greater projected population growth rate of some invasive species relative to their noninvasive relatives was primarily a result of sexual reproduction. The greater sexual reproduction of invasive species is consistent with invaders having a life history strategy more reliant on fecundity than survival and is consistent with a large role of propagule pressure in invasion. Sexual reproduction is a key demographic correlate of invasiveness, suggesting that local processes influencing sexual reproduction, such as enemy escape, might be of general importance. However, the weak correlation of projected population growth with spread rates in the landscape suggests that regional processes, such as dispersal, may be equally important in determining invasion rate

    Chlorpyrifos Affects Phenotypic Outcomes in a Model of Mammalian Neurodevelopment: Critical Stages Targeting Differentiation in PC12 Cells

    Get PDF
    The organophosphate insecticide chlorpyrifos (CPF) adversely affects mammalian brain development through multiple mechanisms. To determine if CPF directly affects neuronal cell replication and phenotypic fate, and to identify the vulnerable stages of differentiation, we exposed PC12 cells, a model for mammalian neurodevelopment, to CPF concentrations spanning the threshold for cholinesterase inhibition (5–50 μM) and conducted evaluations during mitosis and in early and mid-differentiation. In undifferentiated cells, exposure to 5 μM CPF for 1–3 days reduced DNA synthesis significantly without eliciting cytotoxicity. At the same time, CPF increased the expression of tyrosine hydroxylase (TH), the enzymatic marker for the catecholamine phenotype, without affecting choline acetyltransferase (ChAT), the corresponding marker for the cholinergic phenotype. Upon exposure to nerve growth factor (NGF), PC12 cells developed neuritic projections in association with vastly increased TH and ChAT expression accompanying differentiation into the two phenotypes. CPF exposure begun at the start of differentiation significantly reduced ChAT but not TH activity. In contrast, when CPF was added in mid-differentiation (4 days of NGF pretreatment), ChAT was unaffected and TH was increased slightly. Thus, CPF exerts stage-specific effects, reducing DNA synthesis in the undifferentiated state, impairing development of the cholinergic phenotype at the start of differentiation, and promoting expression of the catecholaminergic phenotype both in undifferentiated and differentiated cells. CPF administration in vivo produces deficits in the number of neurons and cholinergic function, and because we were able to reproduce these effects in vitro, our results suggest that CPF directly influences the phenotypic fate of neuronal precursors

    Cooperativity in sandpiles: statistics of bridge geometries

    Full text link
    Bridges form dynamically in granular media as a result of spatiotemporal inhomogeneities. We classify bridges as linear and complex, and analyse their geometrical characteristics. In particular, we find that the length distribution of linear bridges is exponential. We then turn to the analysis of the orientational distribution of linear bridges and find that, in three dimensions, they are {\it vertically diffusive but horizontally superdiffusive}; thus, when they exist, long linear bridges form `domes'. Our results are in good accord with Monte Carlo simulations of bridge structure; we make predictions for quantities that are experimentally accessible, and suggest that bridges are very closely related to force chains.Comment: 15 pages, 10 figures. Minor changes and update

    Vortex microavalanches in superconducting Pb thin films

    Full text link
    Local magnetization measurements on 100 nm type-II superconducting Pb thin films show that flux penetration changes qualitatively with temperature. Small flux jumps at the lowest temperatures gradually increase in size, then disappear near T = 0.7Tc. Comparison with other experiments suggests that the avalanches correspond to dendritic flux protrusions. Reproducibility of the first flux jumps in a decreasing magnetic field indicates a role for defect structure in determining avalanches. We also find a temperature-independent final magnetization after flux jumps, analogous to the angle of repose of a sandpile.Comment: 6 pages, 5 figure

    Exposure to Organophosphates Reduces the Expression of Neurotrophic Factors in Neonatal Rat Brain Regions: Similarities and Differences in the Effects of Chlorpyrifos and Diazinon on the Fibroblast Growth Factor Superfamily

    Get PDF
    BACKGROUND: The fibroblast growth factor (FGF) superfamily of neurotrophic factors plays critical roles in neural cell development, brain assembly, and recovery from neuronal injury. OBJECTIVES: We administered two organophosphate pesticides, chlorpyrifos and diazinon, to neonatal rats on postnatal days 1-4, using doses below the threshold for systemic toxicity or growth impairment, and spanning the threshold for barely detectable cholinesterase inhibition: 1 mg/kg/day chlorpyrifos and 1 or 2 mg/kg/day diazinon. METHODS: Using microarrays, we then examined the regional expression of mRNAs encoding the FGFs and their receptors (FGFRs) in the forebrain and brain stem. RESULTS: Chlorpyrifios and diazinon both markedly suppressed fgf20 expression in the forebrain and fgf2 in the brain stem, while elevating brain stem fgfr4 and evoking a small deficit in brain stem fgfr22. However, they differed in that the effects on fgf2 and f4 were significantly larger for diazinon, and the two agents also showed dissimilar, smaller effects on fgf11, fgf14, and fgfr1. CONCLUSIONS: The fact that there are similarities but also notable disparities in the responses to chlorpyrifos and diazinon, and that robust effects were seen even at doses that do not inhibit cholinesterase, supports the idea that organophosphates differ in their propensity to elicit developmental neurotoyicity, unrelated to their anticholinesterase activity. Effects on neurotrophic factors provide a mechanistic link between organophosphate injury to developing neurons and the eventual, adverse neurodevelopmental outcome
    corecore