62 research outputs found

    Kinetic Characterization and Phosphoregulation of the Francisella tularensis 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase (MEP Synthase)

    Get PDF
    Deliberate and natural outbreaks of infectious disease underscore the necessity of effective vaccines and antimicrobial/antiviral therapeutics. The prevalence of antibiotic resistant strains and the ease by which antibiotic resistant bacteria can be intentionally engineered further highlights the need for continued development of novel antibiotics against new bacterial targets. Isoprenes are a class of molecules fundamentally involved in a variety of crucial biological functions. Mammalian cells utilize the mevalonic acid pathway for isoprene biosynthesis, whereas many bacteria utilize the methylerythritol phosphate (MEP) pathway, making the latter an attractive target for antibiotic development. In this report we describe the cloning and characterization of Francisella tularensis MEP synthase, a MEP pathway enzyme and potential target for antibiotic development. In vitro growth-inhibition assays using fosmidomycin, an inhibitor of MEP synthase, illustrates the effectiveness of MEP pathway inhibition with F. tularensis. To facilitate drug development, F. tularensis MEP synthase was cloned, expressed, purified, and characterized. Enzyme assays produced apparent kinetic constants (KMDXP = 104 µM, KMNADPH = 13 µM, kcatDXP = 2 s−1, kcatNADPH = 1.3 s−1), an IC50 for fosmidomycin of 247 nM, and a Ki for fosmidomycin of 99 nM. The enzyme exhibits a preference for Mg+2 as a divalent cation. Titanium dioxide chromatography-tandem mass spectrometry identified Ser177 as a site of phosphorylation. S177D and S177E site-directed mutants are inactive, suggesting a mechanism for post-translational control of metabolic flux through the F. tularensis MEP pathway. Overall, our study suggests that MEP synthase is an excellent target for the development of novel antibiotics against F. tularensis

    The Lantern Vol. 6, No. 1, December 1937

    Get PDF
    • After Thinking Things Over • Ho! Ho! The Mistletoe! • Unrealized Dreams • Two Preeminent Victorians • The Thing • Progression • It Wasn\u27t in the Lines • He Was the Most Perfect Man • College (C)lasses • Robins and Roses • The Commuter • When the Rose is Dead • Truth in Print • Alias Mike Romanoff • Winslow Homer • When I Was Young • Maurice Evans, a Great Shakespearean • Among Our Contributors • Of Manx and Man • A Sanguinary Pirate • Conversation Has an Adventure • Ursinus\u27 Neediest Casehttps://digitalcommons.ursinus.edu/lantern/1016/thumbnail.jp

    Bulk Damage Effects in Irradiated Silicon Detectors due to Clustered Divacancies

    Get PDF
    High resistivity silicon particle detectors will be used extensively in experiments at the future CERN Large Hadron Collider where the enormous particle fluences give rise to significant atomic displacement damage. A model has been developed to estimate the evolution of defect concentrations during irradiation and their electrical behaviour according to Shockley-Read-Hall (SRH) semiconductor statistics. The observed increases in leakage current and doping concentration changes can be described well after gamma irradiation but less well after fast neutron irradiation. A possible non-SRH mechanism is considered, based on the hypothesis of charge transfer between clustered divacancy defects in neutron damaged silicon detectors. This leads to a large enhancement over the SRH prediction for V2 acceptor state occupancy and carrier generation rate which may resolve the discrepancy

    Characterization of Cfa1, a Monofunctional Acyl Carrier Protein Involved in the Biosynthesis of the Phytotoxin Coronatine

    Get PDF
    Cfa1 was overproduced in Escherichia coli and Pseudomonas syringae, and the degree of 4′-phosphopantetheinylation was determined. The malonyl-coenzyme A:acyl carrier protein transacylase (FabD) of P. syringae was overproduced and shown to catalyze malonylation of Cfa1, suggesting that FabD plays a role in coronatine biosynthesis. Highly purified Cfa1 did not exhibit self-malonylation activity

    Generalized minimum χ2 test for the extreme values

    No full text

    Is political rivalry an incentive to vote?

    No full text

    Can Acute Dermal Systemic Toxicity Tests Be Replaced With Oral Tests? A Comparison of Route-Specific Systemic Toxicity and Hazard Classifications Under the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)

    Get PDF
    Acute systemic toxicity data (LD50 values) and hazard classifications derived in the rat following oral administration and dermal application have been analysed to examine whether or not orally-derived hazard classification or LD50 values can be used to determine dermal hazard classification. Comparing the oral and dermal classifications for 335 substances derived from oral and dermal LD50 values respectively revealed 17% concordance, and indicated that 7% of substances would be classified less severely while 76% would be classified more severely if oral classifications were applied directly to the dermal route. In contrast, applying the oral LD50 values within the dermal classification criteria to determine the dermal classification reduced the concordance to 15% and the relative ‘under-classification’ to 1%, but increased the relative ‘over-classification’ to 84%. Both under- and over-classification are undesirable, and mitigation strategies are discussed. Finally, no substance with an oral LD50 of \u3e2000 mg/kg was classified for acute systemic toxicity by the dermal route, suggesting that dermal testing for acute systemic toxicity of such substances adds nothing to the hazard characterisation and should be removed from routine regulatory data requirements
    • …
    corecore