2,760 research outputs found

    Voltage-Controlled Optics of a Quantum Dot

    Full text link
    We show how the optical properties of a single semiconductor quantum dot can be controlled with a small dc voltage applied to a gate electrode. We find that the transmission spectrum of the neutral exciton exhibits two narrow lines with ∼2\sim 2 μ\mueV linewidth. The splitting into two linearly polarized components arises through an exchange interaction within the exciton. The exchange interaction can be turned off by choosing a gate voltage where the dot is occupied with an additional electron. Saturation spectroscopy demonstrates that the neutral exciton behaves as a two-level system. Our experiments show that the remaining problem for manipulating excitonic quantum states in this system is spectral fluctuation on a μ\mueV energy scale.Comment: 4 pages, 4 figures; content as publishe

    SOLPS-ITER simulations of the COMPASS tokamak

    Get PDF

    Voltage-controlled electron-hole interaction in a single quantum dot

    Full text link
    The ground state of neutral and negatively charged excitons confined to a single self-assembled InGaAs quantum dot is probed in a direct absorption experiment by high resolution laser spectroscopy. We show how the anisotropic electron-hole exchange interaction depends on the exciton charge and demonstrate how the interaction can be switched on and off with a small dc voltage. Furthermore, we report polarization sensitive analysis of the excitonic interband transition in a single quantum dot as a function of charge with and without magnetic field.Comment: Conference Proceedings, Physics and Applications of Spin-Related Phenomena in Semiconductors, Santa Barbara (CA), 2004. 4 pages, 4 figures; content as publishe

    Synthesis for Polynomial Lasso Programs

    Full text link
    We present a method for the synthesis of polynomial lasso programs. These programs consist of a program stem, a set of transitions, and an exit condition, all in the form of algebraic assertions (conjunctions of polynomial equalities). Central to this approach is the discovery of non-linear (algebraic) loop invariants. We extend Sankaranarayanan, Sipma, and Manna's template-based approach and prove a completeness criterion. We perform program synthesis by generating a constraint whose solution is a synthesized program together with a loop invariant that proves the program's correctness. This constraint is non-linear and is passed to an SMT solver. Moreover, we can enforce the termination of the synthesized program with the support of test cases.Comment: Paper at VMCAI'14, including appendi

    Optical detection of single electron spin resonance in a quantum dot

    Full text link
    We demonstrate optically detected spin resonance of a single electron confined to a self-assembled quantum dot. The dot is rendered dark by resonant optical pumping of the spin with a coherent laser. Contrast is restored by applying a radio frequency (rf) magnetic field at the spin resonance. The scheme is sensitive even to rf fields of just a few micro-T. In one case, the spin resonance behaves exactly as a driven 3-level quantum system (a lambda-system) with weak damping. In another, the dot exhibits remarkably strong (67% signal recovery) and narrow (0.34 MHz) spin resonances with fluctuating resonant positions, evidence of unusual dynamic processes of non-Markovian character.Comment: 4 pages, 5 figure

    Absorption and photoluminescence spectroscopy on a single self-assembled charge-tunable quantum dot

    Get PDF
    We have performed detailed photoluminescence (PL) and absorption spectroscopy on the same single self-assembled quantum dot in a charge-tunable device. The transition from neutral to charged exciton in the PL occurs at a more negative voltage than the corresponding transition in absorption. We have developed a model of the Coulomb blockade to account for this observation. At large negative bias, the absorption broadens as a result of electron and hole tunneling. We observe resonant features in this regime whenever the quantum dot hole level is resonant with two-dimensional hole states located at the capping layer-blocking barrier interface in our structure.Comment: 6 pages, 6 figure

    Automated pattern analysis in gesture research : similarity measuring in 3D motion capture models of communicative action

    Get PDF
    The question of how to model similarity between gestures plays an important role in current studies in the domain of human communication. Most research into recurrent patterns in co-verbal gestures – manual communicative movements emerging spontaneously during conversation – is driven by qualitative analyses relying on observational comparisons between gestures. Due to the fact that these kinds of gestures are not bound to well-formedness conditions, however, we propose a quantitative approach consisting of a distance-based similarity model for gestures recorded and represented in motion capture data streams. To this end, we model gestures by flexible feature representations, namely gesture signatures, which are then compared via signature-based distance functions such as the Earth Mover's Distance and the Signature Quadratic Form Distance. Experiments on real conversational motion capture data evidence the appropriateness of the proposed approaches in terms of their accuracy and efficiency. Our contribution to gesture similarity research and gesture data analysis allows for new quantitative methods of identifying patterns of gestural movements in human face-to-face interaction, i.e., in complex multimodal data sets

    Unpaired and spin-singlet paired states of a two-dimensional electron gas in a perpendicular magnetic field

    Full text link
    We present a variational study of both unpaired and spin-singlet paired states induced in a two-dimensional electron gas at low density by a perpendicular magnetic field. It is based on an improved circular-cell approximation which leads to a number of closed analytical results. The ground-state energy of the Wigner crystal containing a single electron per cell in the lowest Landau level is obtained as a function of the filling factor ν\nu: the results are in good agreement with those of earlier approaches and predict νc≈0.25\nu_{c} \approx 0.25 for the upper filling factor at which the solid-liquid transition occurs. A novel localized state of spin-singlet electron pairs is examined and found to be a competitor of the unpaired state for filling factor ν>1\nu >1. The corresponding phase boundary is quantitatively displayed in the magnetic field-electron density plane.Comment: 19 pages, 8 figures, submitted to Phys. Rev. B on 7th April 2001. to appear in Phys. Rev.
    • …
    corecore