2,760 research outputs found
Voltage-Controlled Optics of a Quantum Dot
We show how the optical properties of a single semiconductor quantum dot can
be controlled with a small dc voltage applied to a gate electrode. We find that
the transmission spectrum of the neutral exciton exhibits two narrow lines with
eV linewidth. The splitting into two linearly polarized
components arises through an exchange interaction within the exciton. The
exchange interaction can be turned off by choosing a gate voltage where the dot
is occupied with an additional electron. Saturation spectroscopy demonstrates
that the neutral exciton behaves as a two-level system. Our experiments show
that the remaining problem for manipulating excitonic quantum states in this
system is spectral fluctuation on a eV energy scale.Comment: 4 pages, 4 figures; content as publishe
Voltage-controlled electron-hole interaction in a single quantum dot
The ground state of neutral and negatively charged excitons confined to a
single self-assembled InGaAs quantum dot is probed in a direct absorption
experiment by high resolution laser spectroscopy. We show how the anisotropic
electron-hole exchange interaction depends on the exciton charge and
demonstrate how the interaction can be switched on and off with a small dc
voltage. Furthermore, we report polarization sensitive analysis of the
excitonic interband transition in a single quantum dot as a function of charge
with and without magnetic field.Comment: Conference Proceedings, Physics and Applications of Spin-Related
Phenomena in Semiconductors, Santa Barbara (CA), 2004. 4 pages, 4 figures;
content as publishe
Synthesis for Polynomial Lasso Programs
We present a method for the synthesis of polynomial lasso programs. These
programs consist of a program stem, a set of transitions, and an exit
condition, all in the form of algebraic assertions (conjunctions of polynomial
equalities). Central to this approach is the discovery of non-linear
(algebraic) loop invariants. We extend Sankaranarayanan, Sipma, and Manna's
template-based approach and prove a completeness criterion. We perform program
synthesis by generating a constraint whose solution is a synthesized program
together with a loop invariant that proves the program's correctness. This
constraint is non-linear and is passed to an SMT solver. Moreover, we can
enforce the termination of the synthesized program with the support of test
cases.Comment: Paper at VMCAI'14, including appendi
Optical detection of single electron spin resonance in a quantum dot
We demonstrate optically detected spin resonance of a single electron
confined to a self-assembled quantum dot. The dot is rendered dark by resonant
optical pumping of the spin with a coherent laser. Contrast is restored by
applying a radio frequency (rf) magnetic field at the spin resonance. The
scheme is sensitive even to rf fields of just a few micro-T. In one case, the
spin resonance behaves exactly as a driven 3-level quantum system (a
lambda-system) with weak damping. In another, the dot exhibits remarkably
strong (67% signal recovery) and narrow (0.34 MHz) spin resonances with
fluctuating resonant positions, evidence of unusual dynamic processes of
non-Markovian character.Comment: 4 pages, 5 figure
Absorption and photoluminescence spectroscopy on a single self-assembled charge-tunable quantum dot
We have performed detailed photoluminescence (PL) and absorption spectroscopy
on the same single self-assembled quantum dot in a charge-tunable device. The
transition from neutral to charged exciton in the PL occurs at a more negative
voltage than the corresponding transition in absorption. We have developed a
model of the Coulomb blockade to account for this observation. At large
negative bias, the absorption broadens as a result of electron and hole
tunneling. We observe resonant features in this regime whenever the quantum dot
hole level is resonant with two-dimensional hole states located at the capping
layer-blocking barrier interface in our structure.Comment: 6 pages, 6 figure
Automated pattern analysis in gesture research : similarity measuring in 3D motion capture models of communicative action
The question of how to model similarity between gestures plays an important role in current studies in the domain of human communication. Most research into recurrent patterns in co-verbal gestures – manual communicative movements emerging spontaneously during conversation – is driven by qualitative analyses relying on observational comparisons between gestures. Due to the fact that these kinds of gestures are not bound to well-formedness conditions, however, we propose a quantitative approach consisting of a distance-based similarity model for gestures recorded and represented in motion capture data streams. To this end, we model gestures by flexible feature representations, namely gesture signatures, which are then compared via signature-based distance functions such as the Earth Mover's Distance and the Signature Quadratic Form Distance. Experiments on real conversational motion capture data evidence the appropriateness of the proposed approaches in terms of their accuracy and efficiency. Our contribution to gesture similarity research and gesture data analysis allows for new quantitative methods of identifying patterns of gestural movements in human face-to-face interaction, i.e., in complex multimodal data sets
Unpaired and spin-singlet paired states of a two-dimensional electron gas in a perpendicular magnetic field
We present a variational study of both unpaired and spin-singlet paired
states induced in a two-dimensional electron gas at low density by a
perpendicular magnetic field. It is based on an improved circular-cell
approximation which leads to a number of closed analytical results. The
ground-state energy of the Wigner crystal containing a single electron per cell
in the lowest Landau level is obtained as a function of the filling factor
: the results are in good agreement with those of earlier approaches and
predict for the upper filling factor at which the
solid-liquid transition occurs. A novel localized state of spin-singlet
electron pairs is examined and found to be a competitor of the unpaired state
for filling factor . The corresponding phase boundary is quantitatively
displayed in the magnetic field-electron density plane.Comment: 19 pages, 8 figures, submitted to Phys. Rev. B on 7th April 2001. to
appear in Phys. Rev.
- …