6,184 research outputs found

    Radiation Hardness of Thin Low Gain Avalanche Detectors

    Full text link
    Low Gain Avalanche Detectors (LGAD) are based on a n++-p+-p-p++ structure where an appropriate doping of the multiplication layer (p+) leads to high enough electric fields for impact ionization. Gain factors of few tens in charge significantly improve the resolution of timing measurements, particularly for thin detectors, where the timing performance was shown to be limited by Landau fluctuations. The main obstacle for their operation is the decrease of gain with irradiation, attributed to effective acceptor removal in the gain layer. Sets of thin sensors were produced by two different producers on different substrates, with different gain layer doping profiles and thicknesses (45, 50 and 80 um). Their performance in terms of gain/collected charge and leakage current was compared before and after irradiation with neutrons and pions up to the equivalent fluences of 5e15 cm-2. Transient Current Technique and charge collection measurements with LHC speed electronics were employed to characterize the detectors. The thin LGAD sensors were shown to perform much better than sensors of standard thickness (~300 um) and offer larger charge collection with respect to detectors without gain layer for fluences <2e15 cm-2. Larger initial gain prolongs the beneficial performance of LGADs. Pions were found to be more damaging than neutrons at the same equivalent fluence, while no significant difference was found between different producers. At very high fluences and bias voltages the gain appears due to deep acceptors in the bulk, hence also in thin standard detectors

    Comparison of the Halpha equivalent width of HII regions in a flocculent and a grand design galaxy: possible evidences for IMF variations

    Full text link
    We present here a study of the Halpha equivalent widths of the flocculent galaxy NGC 4395 and the grand design galaxy NGC 5457. A difference between the mean values of the Halpha equivalent widths for the two galaxies has been found. Several hypotheses are presented in order to explain this difference: differences in age, metallicity, star formation rate, photon leakage and initial mass function. Various tests and Monte Carlo models are used to find out the most probable cause of this difference. The resultsshow that the possible cause for the difference could be a variation in the initial mass function. This difference is such that it seems to favor a fraction of more massive stars in the grand design galaxy when compared with the flocculent galaxy. This could be due to a change of the environmental conditions due to a density wave.Comment: 29 pages, 19 figures, accepted for publication in Ap

    Comparison of 35 and 50 {\mu}m thin HPK UFSD after neutron irradiation up to 6*10^15 neq/cm^2

    Full text link
    We report results from the testing of 35 {\mu}m thick Ultra-Fast Silicon Detectors (UFSD produced by Hamamatsu Photonics (HPK), Japan and the comparison of these new results to data reported before on 50 {\mu}m thick UFSD produced by HPK. The 35 {\mu}m thick sensors were irradiated with neutrons to fluences of 0, 1*10^14, 1*10^15, 3*10^15, 6*10^15 neq/cm^2. The sensors were tested pre-irradiation and post-irradiation with minimum ionizing particles (MIPs) from a 90Sr \b{eta}-source. The leakage current, capacitance, internal gain and the timing resolution were measured as a function of bias voltage at -20C and -27C. The timing resolution was extracted from the time difference with a second calibrated UFSD in coincidence, using the constant fraction method for both. Within the fluence range measured, the advantage of the 35 {\mu}m thick UFSD in timing accuracy, bias voltage and power can be established.Comment: 9 pages, 9 figures, HSTD11 Okinawa. arXiv admin note: text overlap with arXiv:1707.0496

    Subtle competition between ferromagnetic and antiferromagnetic order in a Mn(II) - free radical ferrimagnetic chain

    Full text link
    The macroscopic magnetic characterization of the Mn(II) - nitronyl nitroxide free radical chain (Mn(hfac)2(R)-3MLNN) evidenced its transition from a 1-dimensional behavior of ferrimagnetic chains to a 3-dimensional ferromagnetic long range order below 3 K. Neutron diffraction experiments, performed on a single crystal around the transition temperature, led to a different conclusion : the magnetic Bragg reflections detected below 3 K correspond to a canted antiferromagnet where the magnetic moments are mainly oriented along the chain axis. Surprisingly in the context of other compounds in this family of magnets, the interchain coupling is antiferromagnetic. This state is shown to be very fragile since a ferromagnetic interchain arrangement is recovered in a weak magnetic field. This peculiar behavior might be explained by the competition between dipolar interaction, shown to be responsible for the antiferromagnetic long range order below 3 K, and exchange interaction, the balance between these interactions being driven by the strong intrachain spin correlations. More generally, this study underlines the need, in this kind of molecular compounds, to go beyond macroscopic magnetization measurements.Comment: 12 pages, 10 figures, submitted to Phys. Rev.

    Turbulence in the Solar Atmosphere: Manifestations and Diagnostics via Solar Image Processing

    Full text link
    Intermittent magnetohydrodynamical turbulence is most likely at work in the magnetized solar atmosphere. As a result, an array of scaling and multi-scaling image-processing techniques can be used to measure the expected self-organization of solar magnetic fields. While these techniques advance our understanding of the physical system at work, it is unclear whether they can be used to predict solar eruptions, thus obtaining a practical significance for space weather. We address part of this problem by focusing on solar active regions and by investigating the usefulness of scaling and multi-scaling image-processing techniques in solar flare prediction. Since solar flares exhibit spatial and temporal intermittency, we suggest that they are the products of instabilities subject to a critical threshold in a turbulent magnetic configuration. The identification of this threshold in scaling and multi-scaling spectra would then contribute meaningfully to the prediction of solar flares. We find that the fractal dimension of solar magnetic fields and their multi-fractal spectrum of generalized correlation dimensions do not have significant predictive ability. The respective multi-fractal structure functions and their inertial-range scaling exponents, however, probably provide some statistical distinguishing features between flaring and non-flaring active regions. More importantly, the temporal evolution of the above scaling exponents in flaring active regions probably shows a distinct behavior starting a few hours prior to a flare and therefore this temporal behavior may be practically useful in flare prediction. The results of this study need to be validated by more comprehensive works over a large number of solar active regions.Comment: 26 pages, 7 figure

    Tracking in 4 dimensions

    Get PDF
    In this contribution we review the progress towards the development of a novel type of silicon detectors suited for tracking with a picosecond timing resolution, the so called Ultra-Fast Silicon Detectors. The goal is to create a new family of particle detectors merging excellent position and timing resolution with GHz counting capabilities, very low material budget, radiation resistance, fine granularity, low power, insensitivity to magnetic field, and affordability. We aim to achieve concurrent precisions of ~ 10 ps and ~ 10 ÎŒm with a 50 ÎŒm thick sensor. The first part of this contribution explains the basic concepts of low-gain silicon sensors, while in the following the main results are presented, together with the efforts to make the design radiation resistance

    A double-sided, shield-less stave prototype for the ATLAS upgrade strip tracker for the high luminosity LHC

    Get PDF
    A detailed description of the integration structures for the barrel region of the silicon strips tracker of the ATLAS Phase-II upgrade for the upgrade of the Large Hadron Collider, the so-called High Luminosity LHC (HL-LHC), is presented. This paper focuses on one of the latest demonstrator prototypes recently assembled, with numerous unique features. It consists of a shortened, shield-less, and double sided stave, with two candidate power distributions implemented. Thermal and electrical performances of the prototype are presented, as well as a description of the assembly procedures and tools

    Radiation resistant LGAD design

    Get PDF
    In this paper, we report on the radiation resistance of 50-micron thick LGAD detectors manufactured at the Fondazione Bruno Kessler employing several different doping combinations of the gain layer. LGAD detectors with gain layer doping of Boron, Boron low-diffusion, Gallium, Carbonated Boron and Carbonated Gallium have been designed and successfully produced. These sensors have been exposed to neutron fluences up to ϕn∌3⋅1016  n/cm2\phi_n \sim 3 \cdot 10^{16}\; n/cm^2 and to proton fluences up to ϕp∌9⋅1015  p/cm2\phi_p \sim 9\cdot10^{15}\; p/cm^2 to test their radiation resistance. The experimental results show that Gallium-doped LGADs are more heavily affected by initial acceptor removal than Boron-doped LGAD, while the presence of Carbon reduces initial acceptor removal both for Gallium and Boron doping. Boron low-diffusion shows a higher radiation resistance than that of standard Boron implant, indicating a dependence of the initial acceptor removal mechanism upon the implant width. This study also demonstrates that proton irradiation is at least twice more effective in producing initial acceptor removal, making proton irradiation far more damaging than neutron irradiation.Comment: 22 pages, 17 figure

    A double-sided silicon micro-strip super-module for the ATLAS inner detector upgrade in the high-luminosity LHC

    Get PDF
    The ATLAS experiment is a general purpose detector aiming to fully exploit the discovery potential of the Large Hadron Collider (LHC) at CERN. It is foreseen that after several years of successful data-taking, the LHC physics programme will be extended in the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 × 1034 cm−2 s−1. For ATLAS, an upgrade scenario will imply the complete replacement of its internal tracker, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The current baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module is an integration concept proposed for the strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules are assembled into a low-mass local support structure. An electrical super-module prototype for eight double-sided strip modules has been constructed. The aim is to exercise the multi-module readout chain and to investigate the noise performance of such a system. In this paper, the main components of the current super-module prototype are described and its electrical performance is presented in detail
    • 

    corecore