13,024 research outputs found

    Rainbow Graphs and Switching Classes

    Full text link
    A rainbow graph is a graph that admits a vertex-coloring such that every color appears exactly once in the neighborhood of each vertex. We investigate some properties of rainbow graphs. In particular, we show that there is a bijection between the isomorphism classes of n-rainbow graphs on 2n vertices and the switching classes of graphs on n vertices.Comment: Added more reference, fixed some typos (revision for journal submission

    On possible lower bounds for the direct detection rate of SUSY Dark Matter

    Get PDF
    One can expect accessible lower bounds for dark matter detection rate due to restrictions on masses of the SUSY-partners. To explore this correlation one needs a new-generation large-mass detector. The absolute lower bound for detection rate can naturally be due to spin-dependent interaction. Aimed at detecting dark matter with sensitivity higher than 10−510^{-5} event/day/kg an experiment should have a non-zero-spin target. Perhaps, the best is to create a GENIUS-like detector with both Ge-73 (high spin) and Ge-76 nuclei.Comment: latex, 5 pages, 3 figures. Talk given at the III International Conference on Non-accelerator New Physics (NANP'01), Dubna, 19--23 June, 200

    Strain-induced magnetic phase transition in SrCoO3−δ_{3-\delta} thin films

    Get PDF
    It has been well established that both in bulk at ambient pressure and for films under modest strains, cubic SrCoO3−δ_{3-\delta} (δ<0.2\delta < 0.2) is a ferromagnetic metal. Recent theoretical work, however, indicates that a magnetic phase transition to an antiferromagnetic structure could occur under large strain accompanied by a metal-insulator transition. We have observed a strain-induced ferromagnetic to antiferromagnetic phase transition in SrCoO3−δ_{3-\delta} films grown on DyScO3_3 substrates, which provide a large tensile epitaxial strain, as compared to ferromagnetic films under lower tensile strain on SrTiO3_3 substrates. Magnetometry results demonstrate the existence of antiferromagnetic spin correlations and neutron diffraction experiments provide a direct evidence for a G-type antiferromagnetic structure with Ne\'el temperatures between TN∼135 ± 10 KT_N \sim 135\,\pm\,10\,K and ∼325 ± 10 K\sim 325\,\pm\,10\,K depending on the oxygen content of the samples. Therefore, our data experimentally confirm the predicted strain-induced magnetic phase transition to an antiferromagnetic state for SrCoO3−δ_{3-\delta} thin films under large epitaxial strain.Comment: 6 pages, 4 figure

    Miniature Optical Atomic Clock: Stabilization of a Kerr Comb Oscillator

    Full text link
    Mechanical clocks consist of a pendulum and a clockwork that translates the pendulum period to displayed time. The most advanced clocks utilize optical transitions in atoms in place of the pendulum and an optical frequency comb generated by a femtosecond laser as the clockwork. The comb must be stabilized at two points along its frequency spectrum: one with a laser to lock a comb line to a transition in the atom, and another through self referencing to stabilize the frequency interval between the comb lines. This approach requires advanced techniques, so optical atomic clocks are currently laboratory devices in specialized labs. In this paper we leverage unique properties of Kerr comb oscillators for realization of optical atomic clocks in miniature form factors. In particular, we describe a clock based on D1 transition of 87Rb that fits in the palm of the hand, and can be further miniaturized to chip scale.Comment: 4 pages, 4 figure

    Resolution Uniformity and Sensitivity of the NIH ATLAS Small Animal PET Scanner: Comparison to Simulated LSO Scanners Without Depth-of-Interaction Capability

    Get PDF
    Positron emission tomography (PET) scanners designed to image animals the size of rats and mice should possess simultaneously high and uniform spatial resolution and high sensitivity. ATLAS (Advanced Technology Laboratory Animal Scanner), a 6.0 cm diameter effective transverse field-of-view (FOV), 2 cm axial FOV ring-type research scanner seeks these goals by surrounding the animal with eighteen 15 mm deep, LGSO (7 mm)/GSO (8 mm) phoswich detector modules. A Monte Carlo simulation was used to compare the variation of resolution across the FOV and the absolute central point source sensitivity (ACS) of ATLAS to similar systems comprised only of LSO arrays of different depths with no depth-of-interaction (DOI) capability. For ATLAS radial spatial resolution deteriorated by 27% from the center to 3 cm off-axis. Scanners comprised of 15 mm deep, 10 mm deep and 7 mm deep LSO crystals deteriorated by 100%, 51%, and 20%, respectively, over the same distance. Simulated ACS (absorbed energies ≥250 keV) for ATLAS was 2.0% and for the 15 mm, 10 mm deep and 7 mm deep LSO scanners 2.4%, 1.5%, and 0.9%, respectively. Radial resolution loss 3 cm off-axis and ACS measured for the actual ATLAS scanner were similar to the values obtained by simulation (27% resolution loss, 1.8% ACS). The phoswich design thus achieves good resolution uniformity over a 6 cm FOV while preserving sensitivity compared to equivalent non-DOI LSO scanners with a range of crystal depths.Publicad

    Dynamical Evolution of Boson Stars II: Excited States and Self-Interacting Fields

    Full text link
    The dynamical evolution of self-gravitating scalar field configurations in numerical relativity is studied. The previous analysis on ground state boson stars of non-interacting fields is extended to excited states and to fields with self couplings. Self couplings can significantly change the physical dimensions of boson stars, making them much more astrophysically interesting (e.g., having mass of order 0.1 solar mass). The stable (SS) and unstable (UU) branches of equilibrium configurations of boson stars of self-interacting fields are studied; their behavior under perturbations and their quasi-normal oscillation frequencies are determined and compared to the non-interacting case. Excited states of boson stars with and without self-couplings are studied and compared. Excited states also have equilibrium configurations with SS and UU branch structures; both branches are intrinsically unstable under a generic perturbation but have very different instability time scales. We carried out a detailed study of the instability time scales of these configurations. It is found that highly excited states spontaneously decay through a cascade of intermediate states similar to atomic transitions.Comment: 16 pages+ 13 figures . All figures are available at http://wugrav.wustl.edu/Paper

    Sub 20 nm Short Channel Carbon Nanotube Transistors

    Full text link
    Carbon nanotube field-effect transistors with sub 20 nm long channels and on/off current ratios of > 1000000 are demonstrated. Individual single-walled carbon nanotubes with diameters ranging from 0.7 nm to 1.1 nm grown from structured catalytic islands using chemical vapor deposition at 700 degree Celsius form the channels. Electron beam lithography and a combination of HSQ, calix[6]arene and PMMA e-beam resists were used to structure the short channels and source and drain regions. The nanotube transistors display on-currents in excess of 15 microA for drain-source biases of only 0.4 Volt.Comment: Nano Letters in pres

    Fast Face Detector Training Using Tailored Views

    Full text link
    Face detection is an important task in computer vision and often serves as the first step for a variety of applications. State-of-the-art approaches use efficient learning algorithms and train on large amounts of manually labeled imagery. Acquiring appropriate training images, however, is very time-consuming and does not guarantee that the collected training data is representative in terms of data variability. Moreover, available data sets are often acquired under con-trolled settings, restricting, for example, scene illumination or 3D head pose to a narrow range. This paper takes a look into the automated generation of adaptive training samples from a 3D morphable face model. Using statistical insights, the tailored training data guarantees full data variability and is enriched by arbitrary facial attributes such as age or body weight. Moreover, it can automatically adapt to environmental constraints, such as illumination or viewing angle of recorded video footage from surveillance cameras. We use the tailored imagery to train a new many-core imple-mentation of Viola Jones ’ AdaBoost object detection frame-work. The new implementation is not only faster but also enables the use of multiple feature channels such as color features at training time. In our experiments we trained seven view-dependent face detectors and evaluate these on the Face Detection Data Set and Benchmark (FDDB). Our experiments show that the use of tailored training imagery outperforms state-of-the-art approaches on this challenging dataset. 1
    • …
    corecore