1,347 research outputs found

    Noise Induced Intermittency in a Superconducting Microwave Resonator

    Full text link
    We experimentally and numerically study a NbN superconducting stripline resonator integrated with a microbridge. We find that the response of the system to monochromatic excitation exhibits intermittency, namely, noise-induced jumping between coexisting steady-state and limit-cycle responses. A theoretical model that assumes piecewise linear dynamics yields partial agreement with the experimental findings

    Nonlinear Dynamics in the Resonance Lineshape of NbN Superconducting Resonators

    Full text link
    In this work we report on unusual nonlinear dynamics measured in the resonance response of NbN superconducting microwave resonators. The nonlinear dynamics, occurring at relatively low input powers (2-4 orders of magnitude lower than Nb), and which include among others, jumps in the resonance lineshape, hysteresis loops changing direction and resonance frequency shift, are measured herein using varying input power, applied magnetic field, white noise and rapid frequency sweeps. Based on these measurement results, we consider a hypothesis according to which local heating of weak links forming at the boundaries of the NbN grains are responsible for the observed behavior, and we show that most of the experimental results are qualitatively consistent with such hypothesis.Comment: Updated version (of cond-mat/0504582), 16 figure

    PT-symmetry in honeycomb photonic lattices

    Full text link
    We apply gain/loss to honeycomb photonic lattices and show that the dispersion relation is identical to tachyons - particles with imaginary mass that travel faster than the speed of light. This is accompanied by PT-symmetry breaking in this structure. We further show that the PT-symmetry can be restored by deforming the lattice

    Quantum Nondemolition Measurement of Discrete Fock States of a Nanomechanical Resonator

    Get PDF
    We study theoretically a radio frequency superconducting interference device integrated with a nanomechanical resonator and an LC resonator. By applying adiabatic and rotating-wave approximations, we obtain an effective Hamiltonian that governs the dynamics of the mechanical and LC resonators. Nonlinear terms in this Hamiltonian can be exploited for performing a quantum nondemolition measurement of Fock states of the nanomechanical resonator. We address the feasibility of experimental implementation and show that the nonlinear coupling can be made sufficiently strong to allow the detection of discrete mechanical Fock states

    Suppression of geometrical barrier in Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta} crystals by Josephson vortex stacks

    Full text link
    Differential magneto-optics are used to study the effect of dc in-plane magnetic field on hysteretic behavior due to geometrical barriers in Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta} crystals. In absence of in-plane field a vortex dome is visualized in the sample center surrounded by barrier-dominated flux-free regions. With in-plane field, stacks of Josephson vortices form vortex chains which are surprisingly found to protrude out of the dome into the vortex-free regions. The chains are imaged to extend up to the sample edges, thus providing easy channels for vortex entry and for drain of the dome through geometrical barrier, suppressing the magnetic hysteresis. Reduction of the vortex energy due to crossing with Josephson vortices is evaluated to be about two orders of magnitude too small to account for the formation of the protruding chains. We present a model and numerical calculations that qualitatively describe the observed phenomena by taking into account the demagnetization effects in which flux expulsion from the pristine regions results in vortex focusing and in the chain protrusion. Comparative measurements on a sample with narrow etched grooves provide further support to the proposed model.Comment: 12 figures (low res.) Higher resolution figures are available at the Phys Rev B version. Typos correcte

    Intermodulation and Parametric Amplification in a Superconducting Stripline Resonator Integrated with a dc-SQUID

    Get PDF
    We utilize a superconducting stripline resonator containing a dc-SQUID as a strong intermodulation amplifier exhibiting a signal gain of 24dB and a phase modulation of 30dB. Studying the system response in the time domain near the intermodulation amplification threshold reveals a unique noise-induced spikes behavior. We account for this response qualitatively via solving numerically the equations of motion for the integrated system. Furthermore, employing this device as a parametric amplifier yields an abrupt rise of 38dB in the generated side-band signal

    Induced Coherence and Stable Soliton Spiraling

    Full text link
    We develop a theory of soliton spiraling in a bulk nonlinear medium and reveal a new physical mechanism: periodic power exchange via induced coherence, which can lead to stable spiraling and the formation of dynamical two-soliton states. Our theory not only explains earlier observations, but provides a number of predictions which are also verified experimentally. Finally, we show theoretically and experimentally that soliton spiraling can be controled by the degree of mutual initial coherence.Comment: 4 pages, 5 figure
    • …
    corecore