10 research outputs found

    Identification and characterization of plasma cells in normal human bone marrow by high-resolution flow cytometry

    Get PDF
    The low frequency of plasma cells and the lack of specific cell surface markers has been a major obstacle for a detailed characterization of plasma cells in normal human bone marrow. Multiparameter flow cytometry enabled the identification of plasma cells in normal bone marrow aspirates. The plasma cells were located in a unique position in the correlation of forward light scattering, orthogonal light scattering, and immunofluorescent-labeled CD38. The identity of the sorted cell populations was confirmed by microscopic examination of Wright's stained slides and slides stained for cytoplasmic immunoglobulin using polyclonal antibodies reactive with light chains; ie, anti-kappa fluorescein isothiocyanate and anti lambda phycoerythrin (PE). The purity of the sorted plasma cells was greater than 97% (n = 4). The average frequency of plasma cells in normal bone marrow aspirates was low--0.25% of the nucleated cells (n = 7)--but surprisingly consistent between individuals (SD = .05; range 0.14% to 0.30%). A detailed analysis showed two distinct populations of plasma cells: (1) A population relatively smaller by forward light scattering expressed CD22, CD35, and sigE and was identified as early plasma cells (ie, lymphoplasmacytoid), and (2) a population larger by forward light scattering lacked these markers and was identified as mature plasma cells. The antigenic profile of the normal plasma cells was determined in two-color immunofluorescence studies. The expression of cell surface immunoglobulin G (IgG), IgA, IgE, IgD, IgM, and the cell surface antigens CD10, CD11b, CD13, CD11c, CD14, CD15, CD16, CD19, CD22, CD20, CD33, CD35, CD45, and HLA-DR was determined on the plasma cells. A significant heterogeneity in cell surface antigen expression was observed within the plasma cell population. Unexpectedly, myeloid- specific cell surface antigens such as CD33 and CD13 and the early B- cell antigen identified by CD10 were expressed on a proportion of plasma cells. These observations imply that the association of myeloid and early B-cell markers described in multiple myeloma may not be associated with the neoplasia but is a normal phenomenon. \ud \u

    Nanoplastic sizes and numbers: Quantification by single particle tracking

    Get PDF
    Plastic particles have been found almost everywhere in the environment, in oceans, terrestrial water bodies, sediments and air. The extent of this unwanted contamination is difficult to fully capture. Existing quantification methods focus on the detection of millimeter to micrometer sized plastic particles, while plastic breakdown processes continue to smaller, nanometer sized, particles. For these nanoplastics, methods that are inexpensive and can be (semi-) automated for high throughput analysis of dilute nanoplastic particle suspensions, are lacking. Here we combine sensitive fluorescence video microscopy, NileRed staining of plastic particles, and single particle tracking (SPT) to count and size nanoplastics. With this approach we show that particle diameters as low as 45 nm can be quantified, mixing ratios of differently sized particles can be recovered, and number concentrations as low as 2 × 106 particles per ml can be determined. These results indicate that this approach is promising for quantifying the sizes and concentrations of nanoplastics released from consumer and medical plastics and potentially in environmental samples

    α-Synuclein Penetrates Mucin Hydrogels despite Its Mucoadhesive Properties

    Get PDF
    Recent research indicates that the progression of Parkinson's disease can start from neurons of the enteric nervous system, which are in close contact with the gastrointestinal epithelium: α-synuclein molecules can be transferred from these epithelial cells in a prion-like fashion to enteric neurons. Thin mucus layers constitute a defense line against the exposure of noninfected cells to potentially harmful α-synuclein species. We show that - despite its mucoadhesive properties - α-synuclein can translocate across mucin hydrogels, and this process is accompanied by structural rearrangements of the mucin molecules within the gel. Penetration experiments with different α-synuclein variants and synthetic peptides suggest that two binding sites on α-synuclein are required to accomplish this rearrangement of the mucin matrix. Our results support the notion that the translocation of α-synuclein across mucus barriers observed here might be a critical step in the infection of the gastrointestinal epithelium and the development of Parkinson's disease

    Quantitative Morphological Analysis Reveals Ultrastructural Diversity of Amyloid Fibrils from α-Synuclein Mutants

    Get PDF
    High resolution atomic force microscopy is a powerful tool to characterize nanoscale morphological features of protein amyloid fibrils. Comparison of fibril morphological properties between studies has been hampered by differences in analysis procedures and measurement error determination used by various authors. We describe a fibril morphology analysis method that allows for quantitative comparison of features of amyloid fibrils of any amyloidogenic protein measured by atomic force microscopy. We have used tapping mode atomic force microscopy in liquid to measure the morphology of fibrillar aggregates of human wild-type α-synuclein and the disease-related mutants A30P, E46K, and A53T. Analysis of the images shows that fibrillar aggregates formed by E46K α-synuclein have a smaller diameter (9.0 ± 0.8 nm) and periodicity (mode at 55 nm) than fibrils of wild-type α-synuclein (height 10.0 ± 1.1 nm; periodicity has a mode at 65 nm). Fibrils of A30P have smaller diameter still (8.1 ± 1.2 nm) and show a variety of periodicities. This quantitative analysis procedure enables comparison of the results with existing models for assembly of amyloid fibrils

    Concentration Dependence of α-Synuclein Fibril Length Assessed by Quantitative Atomic Force Microscopy and Statistical-Mechanical Theory

    Get PDF
    The initial concentration of monomeric amyloidogenic proteins is a crucial factor in the in vitro formation of amyloid fibrils. We use quantitative atomic force microscopy to study the effect of the initial concentration of human α-synuclein on the mean length of mature α-synuclein fibrils, which are associated with Parkinson's disease. We determine that the critical initial concentration, below which low-molecular-weight species dominate and above which fibrils are the dominant species, lies at ∼15 μM, in good agreement with earlier measurements using biochemical methods. In the concentration regime where fibrils dominate, we find that their mean length increases with initial concentration. These results correspond well to the qualitative predictions of a recent statistical-mechanical model of amyloid fibril formation. In addition, good quantitative agreement of the statistical-mechanical model with the measured mean fibril length as a function of initial protein concentration, as well as with the fibril length distributions for several protein concentrations, is found for reasonable values of the relevant model parameters. The comparison between theory and experiment yields, for the first time to our knowledge, an estimate of the magnitude of the free energies associated with the intermolecular interactions that govern α-synuclein fibril formation

    Tissue transglutaminase modulates α-synuclein oligomerization

    Get PDF
    We have studied the interaction of the enzyme tissue transglutaminase (tTG), catalyzing cross-link formation between protein-bound glutamine residues and primary amines, with Parkinson's disease-associated α-synuclein protein variants at physiologically relevant concentrations. We have, for the first time, determined binding affinities of tTG for wild-type and mutant α-synucleins using surface plasmon resonance approaches, revealing high-affinity nanomolar equilibrium dissociation constants. Nanomolar tTG concentrations were sufficient for complete inhibition of fibrillization by effective α-synuclein cross-linking, resulting predominantly in intramolecularly cross-linked monomers accompanied by an oligomeric fraction. Since oligomeric species have a pathophysiological relevance we further investigated the properties of the tTG/α-synuclein oligomers. Atomic force microscopy revealed morphologically similar structures for oligomers from all α-synuclein variants; the extent of oligomer formation was found to correlate with tTG concentration. Unlike normal α-synuclein oligomers the resultant structures were extremely stable and resistant to GdnHCl and SDS. In contrast to normal β-sheet-containing oligomers, the tTG/α-synuclein oligomers appear to be unstructured and are unable to disrupt phospholipid vesicles. These data suggest that tTG binds equally effective to wild-type and disease mutant α-synuclein variants. We propose that tTG cross-linking imposes structural constraints on α-synuclein, preventing the assembly of structured oligomers required for disruption of membranes and for progression into fibrils. In general, cross-linking of amyloid forming proteins by tTG may prevent the progression into pathogenic species
    corecore