50 research outputs found

    Watermarking as Document Protection

    Get PDF
    Táto práca sa zaoberá ochranou dokumentov pomocou digitálneho watermarkingu. Najprv sú prezentované vlastnosti vodoznakov. Potom nasledujú rôzne možnosti využitia tejto techniky. Ďalšia časť je venovaná rozboru súčasného vývoja v oblasti vodoznačenia, využitiu rôznych princípov vkladania vodoznaku pre rozličné typy multimediálnych dát. Následne je navrhnutý spôsob vkladania vodoznaku do statického obrazu, ktorý je neskôr implementovaný. Nakoniec je implementovaný algoritmus podrobený útokom za účelom poškodenia vodoznaku. Tento vodoznak je potom extrahovaný a je zhodnotená jeho podobnosť s vloženým vodoznakom.This thesis is dealing with document protection using a digital watermarking. First, a watermark characteristics are presented. Then, different usages of the watermarking are discussed. Next part of the thesis is dedicated to current development in watermarking field. It is aimed at various principles of watermark embedding into different multimedia types. Subsequently, a watermarking scheme for still images is proposed and implemented. Finally, the watermarking scheme undergoes attacks, which should damage embedded watermark. Attacked watermark is then extracted and compared to the embedded watermark.

    Digitizing the Appalacian Folklife Project

    Get PDF
    This document describes a project to develop best practices for developing an archive of slide and tape presentations into a modern digital collection. This project considers factors such as open source versus proprietary software tools, the necessary equipment and procedures for digitizing color slides and audiotape, and the value of standards for interoperability in preservation metadata. The project concludes with the creation of a relational database and Web interface for the development and display of the new digital collection

    Fuzz Testing of REST API

    Get PDF
    Táto práca sa zaoberá fuzz testovaním REST API. Po prezentovaní prehľadu techník používaných pri fuzz testovaní a posúdení aktuálnych nástrojov a výskumu zameraného na REST API fuzz testovanie, sme pristúpili k návrhu a implementácii nášho REST API fuzzeru. Základom nášho riešenia je odvodzovanie závislostí z OpenAPI formátu popisu REST API, umožňujúce stavové testovanie aplikácie. Náš fuzzer minimalizuje počet po sebe nasledujúcich 404 odpovedí od aplikácie a testuje aplikáciu viac do hĺbky. Problém prehľadávania dostupných stavov aplikácie je riešený pomocou usporiadania závislostí tak, aby sa maximalizovala pravdepodobnosť získania potrebných vstupných dát pre povinné parametre, v kombinácii s rozhodovaním, ktoré povinné parametre môžu využívať aj náhodne generované hodnoty. Implementácia je rozšírením Schemathesis projektu, ktorý generuje vstupy za pomoci Hypothesis knižnice. Implementovaný fuzzer je použitý na testovanie Red Hat Insights aplikácie, kde našiel 32 chýb, z čoho jednu chybu je možné reprodukovať len za pomoci stavového testovania.This thesis is dealing with fuzz testing of REST API. After presenting state-of-the-art of fuzzing and assessing the current research regarding REST API fuzz testing, we design and implement our REST API fuzzer. The proposed fuzzer infers dependencies of API calls defined in an OpenAPI specification and makes the fuzzing stateful. One of the features is minimization of the number of successive 404 responses while maintaining exploration of a deeper state space of a tested application. To solve the exploration vs. exploitation problem, we used the ordering of dependencies maximizing the probability of obtaining a needed input values and determining of fuzzability of a required parameters. The implementation is an enhancement of the Schemathesis project that is using the Hypothesis library to randomly generate inputs. Our fuzzer is evaluated against the Red Hat Insights application, finding 32 bugs. Amid them, one bug is reproducible only by a stateful set of steps.

    Does the Use of Learning Management Systems With Hypermedia Mean Improved Student Learning Outcomes?

    Get PDF
    Learning management systems (LMSs) that incorporate hypermedia Smart Tutoring Systems and personalized student feedback can increase self-regulated learning (SRL), motivation, and effective learning. These systems are studied with the following aims: (1) to verify whether the use of LMS with hypermedia Smart Tutoring Systems improves student learning outcomes; (2) to verify whether the learning outcomes will be grouped into performance clusters (Satisfactory, Good, and Excellent); and (3) to verify whether those clusters will group together the different learning outcomes assessed in four different evaluation procedures. Use of the LMS with hypermedia Smart Tutoring Systems was studied among students of Health Sciences, all of whom had similar test results in the use of metacognitive skills. It explained 38% of the variance in student learning outcomes in the evaluation procedures. Likewise, three clusters that grouped the learning outcomes in relation to the variable ‘Use of an LMS with hypermedia Smart Tutoring Systems vs. No use’ explained 60.4% of the variance. Each cluster grouped the learning outcomes in the different evaluation procedures. In conclusion, LMS with hypermedia Smart Tutoring Systems in Moodle increased the effectiveness of student learning outcomes, above all in the individual quiz-type tests. It also facilitated personalized learning and respect for the individual pace of student-learning. Hence, modules for the analysis of supervised, unsupervised and multivariate learning should be incorporated into the Moodle platform to provide teaching tools that will undoubtedly contribute to improvements in student learning outcomes.The Research Funding Program 2018 of the Vice-Rectorate for Research and Knowledge Transfer of the University of Burgos

    How do B-Learning and learning patterns influence learning outcomes?

    Get PDF
    Learning Management System (LMS) platforms provide a wealth of information on the learning patterns of students. Learning Analytics (LA) techniques permit the analysis of the logs or records of the activities of both students and teachers on the on-line platform. The learning patterns differ depending on the type of Blended Learning (B-Learning). In this study, we analyse: (1) whether significant differences exist between the learning outcomes of students and their learning patterns on the platform, depending on the type of B-Learning [Replacement blend (RB) vs. Supplemental blend (SB)]; (2) whether a relation exists between the metacognitive and the motivational strategies (MS) of students, their learning outcomes and their learning patterns on the platform. The 87,065 log records of 129 students (69 in RB and 60 in SB) in the Moodle 3.1 platform were analyzed. The results revealed different learning patterns between students depending on the type of B-Learning (RB vs. SB). We have found that the degree of blend, RB vs. SB, seems to condition student behavior on the platform. Learning patterns in RB environments can predict student learning outcomes. Additionally, in RB environments there is a relationship between the learning patterns and the metacognitive and (MS) of the students

    Fuzz Testing of REST API

    No full text
    Táto práca sa zaoberá fuzz testovaním REST API. Po prezentovaní prehľadu techník používaných pri fuzz testovaní a posúdení aktuálnych nástrojov a výskumu zameraného na REST API fuzz testovanie, sme pristúpili k návrhu a implementácii nášho REST API fuzzeru. Základom nášho riešenia je odvodzovanie závislostí z OpenAPI formátu popisu REST API, umožňujúce stavové testovanie aplikácie. Náš fuzzer minimalizuje počet po sebe nasledujúcich 404 odpovedí od aplikácie a testuje aplikáciu viac do hĺbky. Problém prehľadávania dostupných stavov aplikácie je riešený pomocou usporiadania závislostí tak, aby sa maximalizovala pravdepodobnosť získania potrebných vstupných dát pre povinné parametre, v kombinácii s rozhodovaním, ktoré povinné parametre môžu využívať aj náhodne generované hodnoty. Implementácia je rozšírením Schemathesis projektu, ktorý generuje vstupy za pomoci Hypothesis knižnice. Implementovaný fuzzer je použitý na testovanie Red Hat Insights aplikácie, kde našiel 32 chýb, z čoho jednu chybu je možné reprodukovať len za pomoci stavového testovania
    corecore