25 research outputs found

    Near-ultraviolet circular dichroism and two-dimensional spectroscopy of polypeptides

    Get PDF
    A fully quantitative theory of the relationship between protein conformation and optical spectroscopy would facilitate deeper insights into biophysical and simulation studies of protein dynamics and folding. In contrast to intense bands in the far-ultraviolet, near-UV bands are much weaker and have been challenging to compute theoretically. We report some advances in the accuracy of calculations in the near-UV, which were realised through the consideration of the vibrational structure of the electronic transitions of aromatic side chains

    The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry

    Get PDF
    The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations

    The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry

    Get PDF
    The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations

    Modeling Nonperturbative Field-Driven Vibronic Dynamics: Selective State Preparation and Nonlinear Spectroscopy

    No full text
    The partially linearized density matrix formalism for nonadiabatic dynamics is adapted to incorporate a classical external electromagentic field into the system Hamiltonian. This advancement encompasses the possibility of describing field-driven dynamics and computing a variety of linear and nonlinear spectroscopic signals beyond the perturbative limit. The capabilities of the developed approach are demonstrated on a simple two-state vibronic model coupled to a bath, for which we (a) perform an exhaustive search in the field parameter space for optimal state preparation and (b) compute time-resolved transient absorption spectroscopy to monitor the effect of different pulse shapes on measurable experimental signals. While no restrictions on the form of the field have to be assumed, we focus here on Gaussian shaped (linearly) chirped pulses

    Quantum Chemical Modeling of the Photoinduced Activity of Multichromophoric Biosystems

    No full text
    Multichromophoric biosystems represent a broad family with very diverse members, ranging from light-harvesting pigment-protein complexes to nucleic acids. The former are designed to capture, harvest, efficiently transport, and transform energy from sunlight for photosynthesis, while the latter should dissipate the absorbed radiation as quickly as possible to prevent photodamages and corruption of the carried genetic information. Because of the unique electronic and structural characteristics, the modeling of their photoinduced activity is a real challenge. Numerous approaches have been devised building on the theoretical development achieved for single chromophores and on model Hamiltonians that capture the essential features of the system. Still, a question remains: is a general strategy for the accurate modeling of multichromophoric systems possible? By using a quantum chemical point of view, here we review the advancements developed so far highlighting differences and similarities with the single chromophore treatment. Finally, we outline the important limitations and challenges that still need to be tackled to reach a complete and accurate picture of their photoinduced properties and dynamics

    Manipulating Core Excitations in Molecules by X-Ray Cavities

    No full text
    Core excitations on different atoms are highly localized and therefore decoupled. By placing molecules in an x-ray cavity the core transitions become coupled via the exchange of cavity photons and form delocalized hybrid light-matter excitations known as core polaritons. We demonstrate these effects for the two inequivalent carbon atoms in 1,1-difluoroethylene. Polariton signatures in the x-ray absorption, two-photon absorption, and multidimensional four-wave mixing signals are predicted

    Diffractive Imaging of Conical Intersections Amplified by Resonant Infrared Fields

    No full text
    The fate of virtually all photochemical reactions is determined by conical intersections. These are energetically degenerate regions of molecular potential energy surfaces that strongly couple electronic states, thereby enabling fast relaxation channels. Their direct spectroscopic detection relies on weak features that are often buried beneath stronger, less interesting contributions. For azobenzene photoisomerization, a textbook photochemical reaction, we demonstrate how a resonant infrared field can be employed during the conical intersection passage to significantly enhance its coherence signatures in time-resolved X-ray diffraction while leaving the product yield intact. This transition-state amplification holds promise to bring signals of conical intersections above the detection threshold

    Semiclassical Path Integral Calculation of Nonlinear Optical Spectroscopy

    No full text
    Computation of nonlinear optical response functions allows for an in-depth connection between theory and experiment. Experimentally recorded spectra provide a high density of information, but to objectively disentangle overlapping signals and to reach a detailed and reliable understanding of the system dynamics, measurements must be integrated with theoretical approaches. Here, we present a new, highly accurate and efficient trajectory-based semiclassical path integral method for computing higher order nonlinear optical response functions for non-Markovian open quantum systems. The approach is, in principle, applicable to general Hamiltonians and does not require any restrictions on the form of the intrasystem or system–bath couplings. This method is systematically improvable and is shown to be valid in parameter regimes where perturbation theory-based methods qualitatively breakdown. As a test of the methodology presented here, we study a system–bath model for a coupled dimer for which we compare against numerically exact results and standard approximate perturbation theory-based calculations. Additionally, we study a monomer with discrete vibronic states that serves as the starting point for future investigation of vibronic signatures in nonlinear electronic spectroscopy
    corecore