61 research outputs found

    Messina: A Novel Analysis Tool to Identify Biologically Relevant Molecules in Disease

    Get PDF
    BACKGROUND: Morphologically similar cancers display heterogeneous patterns of molecular aberrations and follow substantially different clinical courses. This diversity has become the basis for the definition of molecular phenotypes, with significant implications for therapy. Microarray or proteomic expression profiling is conventionally employed to identify disease-associated genes, however, traditional approaches for the analysis of profiling experiments may miss molecular aberrations which define biologically relevant subtypes. METHODOLOGY/PRINCIPAL FINDINGS: Here we present Messina, a method that can identify those genes that only sometimes show aberrant expression in cancer. We demonstrate with simulated data that Messina is highly sensitive and specific when used to identify genes which are aberrantly expressed in only a proportion of cancers, and compare Messina to contemporary analysis techniques. We illustrate Messina by using it to detect the aberrant expression of a gene that may play an important role in pancreatic cancer. CONCLUSIONS/SIGNIFICANCE: Messina allows the detection of genes with profiles typical of markers of molecular subtype, and complements existing methods to assist the identification of such markers. Messina is applicable to any global expression profiling data, and to allow its easy application has been packaged into a freely-available stand-alone software package

    Expression of LMO4 and outcome in pancreatic ductal adenocarcinoma

    Get PDF
    Identification of a biomarker of prognosis and response to therapy that can be assessed preoperatively would significantly improve overall outcomes for patients with pancreatic cancer. In this study, patients whose tumours exhibited high LMO4 expression had a significant survival advantage following operative resection, whereas the survival of those patients whose tumours had low or no LMO4 expression was not significantly different when resection was compared with operative biopsy alone

    CMS: A web-based system for visualization and analysis of genome-wide methylation data of human cancers

    Get PDF
    DNA methylation of promoter CpG islands is associated with gene suppression, and its unique genome-wide profiles have been linked to tumor progression. Coupled with high-throughput sequencing technologies, it can now efficiently determine genome-wide methylation profiles in cancer cells. Also, experimental and computational technologies make it possible to find the functional relationship between cancer-specific methylation patterns and their clinicopathological parameters.Cancer methylome system (CMS) is a web-based database application designed for the visualization, comparison and statistical analysis of human cancer-specific DNA methylation. Methylation intensities were obtained from MBDCap-sequencing, pre-processed and stored in the database. 191 patient samples (169 tumor and 22 normal specimen) and 41 breast cancer cell-lines are deposited in the database, comprising about 6.6 billion uniquely mapped sequence reads. This provides comprehensive and genome-wide epigenetic portraits of human breast cancer and endometrial cancer to date. Two views are proposed for users to better understand methylation structure at the genomic level or systemic methylation alteration at the gene level. In addition, a variety of annotation tracks are provided to cover genomic information. CMS includes important analytic functions for interpretation of methylation data, such as the detection of differentially methylated regions, statistical calculation of global methylation intensities, multiple gene sets of biologically significant categories, interactivity with UCSC via custom-track data. We also present examples of discoveries utilizing the framework.CMS provides visualization and analytic functions for cancer methylome datasets. A comprehensive collection of datasets, a variety of embedded analytic functions and extensive applications with biological and translational significance make this system powerful and unique in cancer methylation research. CMS is freely accessible at: http://cbbiweb.uthscsa.edu/KMethylomes/

    Retinoid Signaling in Pancreatic Cancer, Injury and Regeneration

    Get PDF
    Background: Activation of embryonic signaling pathways quiescent in the adult pancreas is a feature of pancreatic cancer (PC). These discoveries have led to the development of novel inhibitors of pathways such as Notch and Hedgehog signaling that are currently in early phase clinical trials in the treatment of several cancer types. Retinoid signaling is also essential for pancreatic development, and retinoid therapy is used successfully in other malignancies such as leukemia, but little is known concerning retinoid signaling in PC. Methodology/Principal Findings: We investigated the role of retinoid signaling in vitro and in vivo in normal pancreas, pancreatic injury, regeneration and cancer. Retinoid signaling is active in occasional cells in the adult pancreas but is markedly augmented throughout the parenchyma during injury and regeneration. Both chemically induced and genetically engineered mouse models of PC exhibit a lack of retinoid signaling activity compared to normal pancreas. As a consequence, we investigated Cellular Retinoid Binding Protein 1 (CRBP1), a key regulator of retinoid signaling known to play a role in breast cancer development, as a potential therapeutic target. Loss, or significant downregulation of CRBP1 was present in 70% of human PC, and was evident in the very earliest precursor lesions (PanIN-1A). However, in vitro gain and loss of function studies and CRBP1 knockout mice suggested that loss of CRBP1 expression alone was not sufficient to induce carcinogenesis or to alter PC sensitivity to retinoid based therapies. Conclusions/Significance: In conclusion, retinoid signalling appears to play a role in pancreatic regeneration and carcinogenesis, but unlike breast cancer, it is not mediated directly by CRBP1

    Cryopreservation of human cancers conserves tumour heterogeneity for single-cell multi-omics analysis

    Get PDF
    Background: High throughput single-cell RNA sequencing (scRNA-Seq) has emerged as a powerful tool for exploring cellular heterogeneity among complex human cancers. scRNA-Seq studies using fresh human surgical tissue are logistically difficult, preclude histopathological triage of samples, and limit the ability to perform batch processing. This hindrance can often introduce technical biases when integrating patient datasets and increase experimental costs. Although tissue preservation methods have been previously explored to address such issues, it is yet to be examined on complex human tissues, such as solid cancers and on high throughput scRNA-Seq platforms. Methods: Using the Chromium 10X platform, we sequenced a total of ~ 120,000 cells from fresh and cryopreserved replicates across three primary breast cancers, two primary prostate cancers and a cutaneous melanoma. We performed detailed analyses between cells from each condition to assess the effects of cryopreservation on cellular heterogeneity, cell quality, clustering and the identification of gene ontologies. In addition, we performed single-cell immunophenotyping using CITE-Seq on a single breast cancer sample cryopreserved as solid tissue fragments. Results: Tumour heterogeneity identified from fresh tissues was largely conserved in cryopreserved replicates. We show that sequencing of single cells prepared from cryopreserved tissue fragments or from cryopreserved cell suspensions is comparable to sequenced cells prepared from fresh tissue, with cryopreserved cell suspensions displaying higher correlations with fresh tissue in gene expression. We showed that cryopreservation had minimal impacts on the results of downstream analyses such as biological pathway enrichment. For some tumours, cryopreservation modestly increased cell stress signatures compared to freshly analysed tissue. Further, we demonstrate the advantage of cryopreserving whole-cells for detecting cell-surface proteins using CITE-Seq, which is impossible using other preservation methods such as single nuclei-sequencing. Conclusions: We show that the viable cryopreservation of human cancers provides high-quality single-cells for multiomics analysis. Our study guides new experimental designs for tissue biobanking for future clinical single-cell RNA sequencing studies

    The key hypoxia regulated gene CAIX is upregulated in basal-like breast tumours and is associated with resistance to chemotherapy

    Get PDF
    Basal-like tumours account for 15% of invasive breast carcinomas and are associated with a poorer prognosis and resistance to therapy. We hypothesised that this aggressive phenotype is because of an intrinsically elevated hypoxic response. Microarrayed tumours from 188 patients were stained for hypoxia-inducible factor (HIF)-1α, prolyl hydroxylase (PHD)1, PHD2, PHD3 and factor inhibiting HIF (FIH)-1, and carbonic anhydrase (CA) IX stained in 456 breast tumours. Tumour subtypes were correlated with standard clincopathological parameters as well as hypoxic markers. Out of 456 tumours 62 (14%) tumours were basal-like. These tumours were positively correlated with high tumour grade (P<0.001) and were associated with a significantly worse disease-free survival compared with luminal tumours (P<0.001). Fifty percent of basal-like tumours expressed HIF-1α, and more than half expressed at least one of the PHD enzymes and FIH-1. Basal-like tumours were nine times more likely to be associated with CAIX expression (P<0.001) in a multivariate analysis. Carbonic anhydrase IX expression was positively correlated with tumour size (P=0.005), tumour grade (P<0.001) and oestrogen receptor (ER) negativity (P<0.001). Patients with any CAIX-positive breast tumour phenotype and in the basal tumour group had a significantly worse prognosis than CAIX-negative tumours when treated with chemotherapy (P<0.001 and P=0.03, respectively). The association between basal phenotype and CAIX suggests that the more aggressive behaviour of these tumours is partly due to an enhanced hypoxic response. Further, the association with chemoresistance in CAIX-positive breast tumours and basal-like tumours in particular raises the possibility that targeted therapy against HIF pathway or downstream genes such as CAs may be an approach to investigate for these patients
    • …
    corecore