150 research outputs found
Multivariate hypergeometric functions as tau functions of Toda lattice and Kadomtsev-Petviashvili equation
We present the q-deformed multivariate hypergeometric functions related to
Schur polynomials as tau-functions of the KP and of the two-dimensional Toda
lattice hierarchies. The variables of the hypergeometric functions are the
higher times of those hierarchies. The discrete Toda lattice variable shifts
parameters of hypergeometric functions. The role of additional symmetries in
generating hypergeometric tau-functions is explained
Plans for laser spectroscopy of trapped cold hydrogen-like HCI
Laser spectroscopy studies are being prepared to measure the 1s ground state
hyperfine splitting in trapped cold highly charged ions. The purpose of such
experiments is to test quantum electrodynamics in the strong electric field
regime. These experiments form part of the HITRAP project at GSI. A brief
review of the planned experiments is presented.Comment: 4 pages, 4 figures, accepted for publication (NIMB
Plans for laser spectroscopy of trapped cold hydrogen-like HCI
Laser spectroscopy studies are being prepared to measure the 1s ground state
hyperfine splitting in trapped cold highly charged ions. The purpose of such
experiments is to test quantum electrodynamics in the strong electric field
regime. These experiments form part of the HITRAP project at GSI. A brief
review of the planned experiments is presented.Comment: 4 pages, 4 figures, accepted for publication (NIMB
Plans for laser spectroscopy of trapped cold hydrogen-like HCI
Laser spectroscopy studies are being prepared to measure the 1s ground state
hyperfine splitting in trapped cold highly charged ions. The purpose of such
experiments is to test quantum electrodynamics in the strong electric field
regime. These experiments form part of the HITRAP project at GSI. A brief
review of the planned experiments is presented.Comment: 4 pages, 4 figures, accepted for publication (NIMB
Current-Induced Effects in Nanoscale Conductors
We present an overview of current-induced effects in nanoscale conductors
with emphasis on their description at the atomic level. In particular, we
discuss steady-state current fluctuations, current-induced forces, inelastic
scattering and local heating. All of these properties are calculated in terms
of single-particle wavefunctions computed using a scattering approach within
the static density-functional theory of many-electron systems. Examples of
current-induced effects in atomic and molecular wires will be given and
comparison with experimental results will be provided when available.Comment: revtex, 10 pages, 8 figure
Fast shuttling of ions in a scalable Penning trap array
We report on the design and testing of an array of Penning ion traps made from printed circuit board. The system enables fast shuttling of ions from one trapping zone to another, which could be of use in quantum information processing. We describe simulations carried out to determine the optimal potentials to be applied to the trap electrodes for enabling this movement. The results of a preliminary experiment with a cloud of laser cooled calcium ions demonstrate a round-trip shuttling efficiency of up to 75. © 2010 American Institute of Physics
- …