465 research outputs found
Dynamic ploidy changes drive fluconazole resistance in human cryptococcal meningitis.
BACKGROUND: Cryptococcal meningitis (CM) causes an estimated 180,000 deaths annually, predominantly in sub-Saharan Africa, where most patients receive fluconazole (FLC) monotherapy. While relapse after FLC monotherapy with resistant strains is frequently observed, the mechanisms and impact of emergence of FLC resistance in human CM are poorly understood. Heteroresistance (HetR) - a resistant subpopulation within a susceptible strain - is a recently described phenomenon in Cryptococcus neoformans (Cn) and Cryptococcus gattii (Cg), the significance of which has not previously been studied in humans. METHODS: A cohort of 20 patients with HIV-associated CM in Tanzania was prospectively observed during therapy with either FLC monotherapy or in combination with flucytosine (5FC). Total and resistant subpopulations of Cryptococcus spp. were quantified directly from patient cerebrospinal fluid (CSF). Stored isolates underwent whole genome sequencing and phenotypic characterization. RESULTS: Heteroresistance was detectable in Cryptococcus spp. in the CSF of all patients at baseline (i.e., prior to initiation of therapy). During FLC monotherapy, the proportion of resistant colonies in the CSF increased during the first 2 weeks of treatment. In contrast, no resistant subpopulation was detectable in CSF by day 14 in those receiving a combination of FLC and 5FC. Genomic analysis revealed high rates of aneuploidy in heteroresistant colonies as well as in relapse isolates, with chromosome 1 (Chr1) disomy predominating. This is apparently due to the presence on Chr1 of ERG11, which is the FLC drug target, and AFR1, which encodes a drug efflux pump. In vitro efflux levels positively correlated with the level of heteroresistance. CONCLUSION: Our findings demonstrate for what we believe is the first time the presence and emergence of aneuploidy-driven FLC heteroresistance in human CM, association of efflux levels with heteroresistance, and the successful suppression of heteroresistance with 5FC/FLC combination therapy. FUNDING: This work was supported by the Wellcome Trust Strategic Award for Medical Mycology and Fungal Immunology 097377/Z/11/Z and the Daniel Turnberg Travel Fellowship
Evidence-based decision support for pediatric rheumatology reduces diagnostic errors.
BACKGROUND: The number of trained specialists world-wide is insufficient to serve all children with pediatric rheumatologic disorders, even in the countries with robust medical resources. We evaluated the potential of diagnostic decision support software (DDSS) to alleviate this shortage by assessing the ability of such software to improve the diagnostic accuracy of non-specialists.
METHODS: Using vignettes of actual clinical cases, clinician testers generated a differential diagnosis before and after using diagnostic decision support software. The evaluation used the SimulConsult® DDSS tool, based on Bayesian pattern matching with temporal onset of each finding in each disease. The tool covered 5405 diseases (averaging 22 findings per disease). Rheumatology content in the database was developed using both primary references and textbooks. The frequency, timing, age of onset and age of disappearance of findings, as well as their incidence, treatability, and heritability were taken into account in order to guide diagnostic decision making. These capabilities allowed key information such as pertinent negatives and evolution over time to be used in the computations. Efficacy was measured by comparing whether the correct condition was included in the differential diagnosis generated by clinicians before using the software ( unaided ), versus after use of the DDSS ( aided ).
RESULTS: The 26 clinicians demonstrated a significant reduction in diagnostic errors following introduction of the software, from 28% errors while unaided to 15% using decision support (p \u3c 0.0001). Improvement was greatest for emergency medicine physicians (p = 0.013) and clinicians in practice for less than 10 years (p = 0.012). This error reduction occurred despite the fact that testers employed an open book approach to generate their initial lists of potential diagnoses, spending an average of 8.6 min using printed and electronic sources of medical information before using the diagnostic software.
CONCLUSIONS: These findings suggest that decision support can reduce diagnostic errors and improve use of relevant information by generalists. Such assistance could potentially help relieve the shortage of experts in pediatric rheumatology and similarly underserved specialties by improving generalists\u27 ability to evaluate and diagnose patients presenting with musculoskeletal complaints.
TRIAL REGISTRATION: ClinicalTrials.gov ID: NCT02205086
Effective action in a higher-spin background
We consider a free massless scalar field coupled to an infinite tower of
background higher-spin gauge fields via minimal coupling to the traceless
conserved currents. The set of Abelian gauge transformations is deformed to the
non-Abelian group of unitary operators acting on the scalar field. The gauge
invariant effective action is computed perturbatively in the external fields.
The structure of the various (divergent or finite) terms is determined. In
particular, the quadratic part of the logarithmically divergent (or of the
finite) term is expressed in terms of curvatures and related to conformal
higher-spin gravity. The generalized higher-spin Weyl anomalies are also
determined. The relation with the theory of interacting higher-spin gauge
fields on anti de Sitter spacetime via the holographic correspondence is
discussed.Comment: 40 pages, Some errors and typos corrected, Version published in JHE
Assistência ao paciente obeso mórbido submetido à cirurgia bariátrica: dificuldades do enfermeiro
Quantitative Three-dimensional Assessment of Knee Joint Space Width from Weight-bearing CT.
Background Imaging of structural disease in osteoarthritis has traditionally relied on MRI and radiography. Joint space mapping (JSM) can be used to quantitatively map joint space width (JSW) in three dimensions from CT images. Purpose To demonstrate the reproducibility, repeatability, and feasibility of JSM of the knee using weight-bearing CT images. Materials and Methods Two convenience samples of weight-bearing CT images of left and right knees with radiographic Kellgren-Lawrence grades (KLGs) less than or equal to 2 were acquired from 2014 to 2018 and were analyzed retrospectively with JSM to deliver three-dimensional JSW maps. For reproducibility, images of three sets of knees were used for novice training, and then the JSM output was compared against an expert's assessment. JSM was also performed on 2-week follow-up images in the second cohort, yielding three-dimensional JSW difference maps for repeatability. Statistical parametric mapping was performed on all knee imaging data (KLG, 0-4) to show the feasibility of a surface-based analysis in three dimensions. Results Reproducibility (in 20 individuals; mean age, 58 years ± 7 [standard deviation]; mean body mass index, 28 kg/m2 ± 6; 14 women) and repeatability (in nine individuals; mean age, 53 years ± 6; mean body mass index, 26 kg/m2 ± 4; seven women) reached their lowest performance at a smallest detectable difference less than ±0.1 mm in the central medial tibiofemoral joint space for individuals without radiographically demonstrated disease. The average root mean square coefficient of variation was less than 5% across all groups. Statistical parametric mapping (33 individuals; mean age, 57 years ± 7; mean body mass index, 27 kg/m2 ± 6; 23 women) showed that the central-to-posterior medial joint space was significantly narrower by 0.5 mm for each incremental increase in the KLG (threshold P < .05). One knee (KLG, 2) demonstrated a baseline versus 24-month change in its three-dimensional JSW distribution that was beyond the smallest detectable difference across the lateral joint space. Conclusion Joint space mapping of the knee using weight-bearing CT images is feasible, demonstrating a relationship between the three-dimensional joint space width distribution and structural joint disease. It is reliably learned by novice users, can be personalized for disease phenotypes, and can be used to achieve a smallest detectable difference that is at least 50% smaller than that reported to be achieved at the highest performance level in radiography. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Roemer in this issue
Ordinary-derivative formulation of conformal totally symmetric arbitrary spin bosonic fields
Conformal totally symmetric arbitrary spin bosonic fields in flat space-time
of even dimension greater than or equal to four are studied. Second-derivative
(ordinary-derivative) formulation for such fields is developed. We obtain gauge
invariant Lagrangian and the corresponding gauge transformations. Gauge
symmetries are realized by involving the Stueckelberg and auxiliary fields.
Realization of global conformal boost symmetries on conformal gauge fields is
obtained. Modified de Donder gauge condition and de Donder-Stueckelberg gauge
condition are introduced. Using the de Donder-Stueckelberg gauge frame,
equivalence of the ordinary-derivative and higher-derivative approaches is
demonstrated. On-shell degrees of freedom of the arbitrary spin conformal field
are analyzed. Ordinary-derivative light-cone gauge Lagrangian of conformal
fields is also presented. Interrelations between the ordinary-derivative gauge
invariant formulation of conformal fields and the gauge invariant formulation
of massive fields are discussed.Comment: 51 pages, v2: Results and conclusions of v1 unchanged. In Sec.3,
brief review of higher-derivative approaches added. In Sec.4, new
representations for Lagrangian, modified de Donder gauge, and de
Donder-Stueckelberg gauge added. In Sec.5, discussion of interrelations
between the ordinary-derivative and higher-derivative approaches added.
Appendices A,B,C,D and references adde
Elevation in Cell Cycle and Protein Metabolism Gene Transcription in Inactive Colonic Tissue From Icelandic Patients With Ulcerative Colitis
BACKGROUND: A combination of genetic and environmental factors is thought to be involved in the pathogenesis of ulcerative colitis (UC). In Iceland, the incidence of UC is one of the highest in the world. The aim of this study was to characterize patients with UC and identify potential germline mutations and pathways that could be associated with UC in this population. METHODS: Exome sequencing and genome-wide microarray analysis on macroscopically noninflamed colonic mucosa from patients and controls were performed. Exome sequence data were examined for very rare or novel mutations that were over-represented in the UC cohort. Combined matching of variant analysis and downstream influence on transcriptomic expression in the rectum were analyzed. RESULTS: One thousand eight hundred thirty-eight genes were differentially expressed in rectal tissue from UC patients and identified an upregulation in genes associated with cell cycle control and protein processing in the endoplasmic reticulum (ER). Two missense mutations in thiopurine S-methyltransferase (TPMT) with a minor allele frequency of 0.22 in the UC patients compared with a reported 0.062 in the Icelandic population were identified. A predicted damaging mutation in the gene SLC26A3 is potentially associated with increased expression of DUOX2 and DUOXA2 in rectal tissue. CONCLUSIONS: Colonic mucosa of UC patients demonstrates evidence of an elevation in genes involving cell proliferation and processing of proteins within the ER. Exome sequencing identified a possible increased prevalence of 2 damaging TPMT variants within the UC population, suggesting screening the UC population before initiation of thiopurine analogue therapy to avoid toxicity associated with these mutations
Fermionic Coset, Critical Level W^(2)_4-Algebra and Higher Spins
The fermionic coset is a limit of the pure spinor formulation of the AdS5xS5
sigma model as well as a limit of a nonlinear topological A-model, introduced
by Berkovits. We study the latter, especially its symmetries, and map them to
higher spin algebras.
We show the following. The linear A-model possesses affine
\AKMSA{pgl}{4}{4}_0 symmetry at critical level and its \AKMSA{psl}{4}{4}_0
current-current perturbation is the nonlinear model. We find that the
perturbation preserves -algebra symmetry at critical
level. There is a topological algebra associated to \AKMSA{pgl}{4}{4}_0 with
the properties that the perturbation is BRST-exact. Further, the
BRST-cohomology contains world-sheet supersymmetric symplectic fermions and the
non-trivial generators of the -algebra. The Zhu functor
maps the linear model to a higher spin theory. We analyze its
\SLSA{psl}{4}{4} action and find finite dimensional short multiplets.Comment: 25 page
Incomplete oedipism and chronic suicidality in psychotic depression with paranoid delusions related to eyes
Self-enucleation or oedipism is a term used to describe self-inflicted enucleation. It is a rare form of self-mutilation, found mainly in acutely psychotic patients. We propose the term incomplete oedipism to describe patients who deliberately and severely mutilate their eyes without proper enucleation. We report the case of a 32-year-old male patient with a five-year history of psychotic depression accompanied by paranoid delusions centered around his belief that his neighbors criticized him and stared at him. A central feature of his clinical picture was an eye injury that the patient had caused by pouring molten lead into his right eye during a period of deep hopelessness and suicidality when the patient could not resolve his anhedonia and social isolation. Pharmacotherapy and psychotherapy dramatically improved his disorder
- …