192 research outputs found

    Freezing of spin dynamics and omega/T scaling in underdoped cuprates

    Full text link
    The memory function approach to spin dynamics in doped antiferromagnetic insulator combined with the assumption of temperature independent static spin correlations and constant collective mode damping leads to omega/T scaling in a broad range. The theory involving a non universal scaling parameter is used to analyze recent inelastic neutron scattering results for underdoped cuprates. Adopting modified damping function also the emerging central peak in low-doped cuprates at low temperatures can be explained within the same framework.Comment: 4 pages, 5 figures; to appear in Journal of Physics: Conference Series (ICM2009 Conference, Karlsruhe, Germany

    Entanglement of two delocalised electrons

    Full text link
    Several convenient formulae for the entanglement of two indistinguishable delocalised spin-1/2 particles are introduced. This generalizes the standard formula for concurrence, valid only in the limit of localised or distinguishable particles. Several illustrative examples are given.Comment: 4 page

    Puckering Free Energy of Pyranoses: an NMR and Metadynamics--Umbrella Sampling Investigation

    Full text link
    We present the results of a combined metadynamics--umbrella sampling investigation of the puckered conformers of pyranoses described using the gromos 45a4 force field. The free energy landscape of Cremer--Pople puckering coordinates has been calculated for the whole series of alpha and beta aldohexoses, showing that the current force field parameters fail in reproducing proper puckering free energy differences between chair conformers. We suggest a modification to the gromos 45a4 parameter set which improves considerably the agreement of simulation results with theoretical and experimental estimates of puckering free energies. We also report on the experimental measurement of altrose conformers populations by means of NMR spectroscopy, which show good agreement with the predictions of current theoretical models

    A Chiral Phosphine (CRC-PHOS) Derived from ( + )-Champhanic Acid. A New Ligand for Homogeneous Asymmetric Hydrogenation

    Get PDF
    The lactone of 1S,3S-1-hydroxy-1-diphenylphosphinomethyl- 2,2,3-tri-methyl-cyclopentan-3-carboxylic acid (4, CRC-PHOS) was prepared from ( + )-camphanic acid methylester 1, and its complex salt [Rh(CRC-PHOS)2NBD] · CI04 • THF (5) was isolated. The latter exhibited rather a high rate, but low enantioselectivity in the first attempt at asymmetric hydrogenation

    Translating Evidence from Clonal Hematopoiesis to Cardiovascular Disease: A Systematic Review

    Get PDF
    Some random mutations can confer a selective advantage to a hematopoietic stem cell. As a result, mutated hematopoietic stem cells can give rise to a significant proportion of mutated clones of blood cells. This event is known as “clonal hematopoiesis.” Clonal hematopoiesis is closely associated with age, and carriers show an increased risk of developing blood cancers. Clonal hematopoiesis of indeterminate potential is defined by the presence of clones carrying a mutation associated with a blood neoplasm without obvious hematological malignancies. Unexpectedly, in recent years, it has emerged that clonal hematopoiesis of indeterminate potential carriers also have an increased risk of developing cardiovascular disease. Mechanisms linking clonal hematopoiesis of indeterminate potential to cardiovascular disease are only partially known. Findings in animal models indicate that clonal hematopoiesis of indeterminate potential-related mutations amplify inflammatory responses. Consistently, clinical studies have revealed that clonal hematopoiesis of indeterminate potential carriers display increased levels of inflammatory markers. In this review, we describe progress in our understanding of clonal hematopoiesis in the context of cancer, and we discuss the most recent findings linking clonal hematopoiesis of indeterminate potential and cardiovascular diseases

    Interplay between distribution of live cells and growth dynamics of solid tumours

    Get PDF
    Experiments show that simple diffusion of nutrients and waste molecules is not sufficient to explain the typical multilayered structure of solid tumours, where an outer rim of proliferating cells surrounds a layer of quiescent but viable cells and a central necrotic region. These experiments challenge models of tumour growth based exclusively on diffusion. Here we propose a model of tumour growth that incorporates the volume dynamics and the distribution of cells within the viable cell rim. The model is suggested by in silico experiments and is validated using in vitro data. The results correlate with in vivo data as well, and the model can be used to support experimental and clinical oncology

    Synthesis, Conformational Studies and Enantioselective Homogeneous Catalytic Hydrogenation with CRC-PHOS, and Some Congeners

    Get PDF
    The lactone of (1S,3R)-1-hydroxy-1-diphenylphosphino metyl- 2,2,3-trimethylcyclopentan-3-carboxylic acid (8, CRC-PHOS), and (1R,3R)-bis(diphenylphosphinoxymethyl)-2,2,3-trimethylcyclopentane (16), were prepared starting from ( + )-camphanic and (-)- isocamphoric acid, respectively. Their complex salts [Rh(norbornadiene) lactone of (1S,3R)-1-hydroxy-1-diphenylphosphinomethyl- 2,2,3-trimethylcyclopentan-3-carboxylic acid] perchlorate (27), and [Rh(norbornadiene (1R,3R)-1,2,2-trimethyl-1,3-bis ( diphenylphosphinoxymethyl) cyclopentane)] perchlorate (28) were isolated and their catalytic and enantioselective ability tested on some model prochiral carboxylic acids. The asymetric bias did not exceed 35°/o e. e. in either case. Attepmts at preparation of the diphosphine congener of 16, i.e. 21, as well as isolation of the phosphinite congener of 8, i. e. 22, failed. NMR LIS study of the conformation in solution of 8, and model compounds 6 and 9 revealed that 6 and 8 possess in their most stable conformations a dihedral angle 1P of 165°, (Figure 4.) while for 9 two stable conformations with 1P 200° and 350° are found. These results indicate that bidentate binding of metal to heteroatom X (0, P) in the side chain, and to the tetrahedral oxygen within lactone group is scarcely possible

    Fermentation of Vaccinium floribundum Berries with Lactiplantibacillus plantarum Reduces Oxidative Stress in Endothelial Cells and Modulates Macrophages Function

    Get PDF
    Accumulating evidence suggests that high consumption of natural antioxidants promotes health by reducing oxidative stress and, thus, the risk of developing cardiovascular diseases. Similarly, fermentation of natural compounds with lactic acid bacteria (LAB), such as Lactiplantibacillus plantarum, enhances their beneficial properties as regulators of the immune, digestive, and cardiovascular system. We investigated the effects of fermentation with Lactiplantibacillus plantarum on the antioxidant and immunomodulatory effects of Pushgay berries (Vaccinium floribundum, Ericaceae family) in human umbilical vein endothelial cells (HUVECs) and macrophage cell line RAW264.7. Polyphenol content was assayed by Folin-Ciocalteu and HPLC-MS/MS analysis. The effects of berries solutions on cell viability or proliferation were assessed by WST8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt and Lactate dehydrogenase (LDH) release, Trypan blue exclusion test, and Alamar blue assay. Antioxidant activity was evaluated by a cell-based chemiluminescent probe for the detection of intracellular H2O2 production in HUVECs. Heme oxygenase-1 (HO-1) expression levels were investigated by RT-qPCR. Glutathione reductase (GR), glutathione peroxidase (Gpx), superoxide dismutase (SOD), and catalase (CAT) activities, as markers of intracellular antioxidant defense, were evaluated by spectrophotometric analysis. The immunomodulatory activity was examined in RAW 264.7 by quantification of inducible nitric oxide synthase (iNOS) and Tumor Necrosis Factor-alpha (TNF alpha) by RT-qPCR. Data showed that fermentation of Pushgay berries (i) enhances the content of quercetin aglycone, and (ii) increases their intracellular antioxidant activity, as indicated by the reduction in H2O2-induced cell death and the decrease in H2O2-induced HO-1 gene expression in HUVECs treated for 24 h with fermented berries solution (10 mu g/mL). Moreover, treatment with Pushgay berries for 72 h (10 mu g/mL) promotes cells growth in RAW 264.7, and only fermented Pushgay berries increase the expression of iNOS in the same cell line. Taken together, our results show that LAB fermentation of Pushgay berries enhances their antioxidant and immunomodulatory properties

    The 3-Band Hubbard-Model versus the 1-Band Model for the high-Tc Cuprates: Pairing Dynamics, Superconductivity and the Ground-State Phase Diagram

    Full text link
    One central challenge in high-TcT_c superconductivity (SC) is to derive a detailed understanding for the specific role of the CuCu-dx2y2d_{x^2-y^2} and OO-px,yp_{x,y} orbital degrees of freedom. In most theoretical studies an effective one-band Hubbard (1BH) or t-J model has been used. Here, the physics is that of doping into a Mott-insulator, whereas the actual high-TcT_c cuprates are doped charge-transfer insulators. To shed light on the related question, where the material-dependent physics enters, we compare the competing magnetic and superconducting phases in the ground state, the single- and two-particle excitations and, in particular, the pairing interaction and its dynamics in the three-band Hubbard (3BH) and 1BH-models. Using a cluster embedding scheme, i.e. the variational cluster approach (VCA), we find which frequencies are relevant for pairing in the two models as a function of interaction strength and doping: in the 3BH-models the interaction in the low- to optimal-doping regime is dominated by retarded pairing due to low-energy spin fluctuations with surprisingly little influence of inter-band (p-d charge) fluctuations. On the other hand, in the 1BH-model, in addition a part comes from "high-energy" excited states (Hubbard band), which may be identified with a non-retarded contribution. We find these differences between a charge-transfer and a Mott insulator to be renormalized away for the ground-state phase diagram of the 3BH- and 1BH-models, which are in close overall agreement, i.e. are "universal". On the other hand, we expect the differences - and thus, the material dependence to show up in the "non-universal" finite-T phase diagram (TcT_c-values).Comment: 17 pages, 9 figure
    corecore