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1 Details of model development

In this section we complete some of the calculations presented only in summary form in
the main paper.

1.1 Dynamics of live cell volume

In the main text we introduce the dynamics of total cell volume

O = aValt) =5 (VD) = Valt) = aF V() V(L - F(]  (S.)

and at the same time we relate total cell volume V to the volume of live cells V, by
means of equation

Va(t) = F(O)V (1) (S.2)
Then
e = POV
- F@) {avaa:) 5 (2((;) - vm)] + Yl an
_ [aF(t) + o+ ‘“;F] Va(t) — F(zt)Va(t) (S.3)

Equation (S.3) corresponds to equation (2) in the main text.

1.2 Live cell fraction

In the main text we consider the depth-dependent fractional density of live cells f(s),
which is well approximated by the exponential function:

f(s) = exp(=s/}) (S4)
Using equation (S.4) we find that the total volume taken by live cells in a spherical
tumour cluster is
T r—s
Va(r)= | 4ms“exp | — 3 ds (S.5)
0

where 7 is the cluster radius. Integrating equation (S.5) with standard elementary meth-
ods, we find

Vo = 4nm |:(?”2)\ —2rA% +2)0%) — 2A% exp (—g)}

_ (4m o, AA2 N A3 r
- (37“ > {3 <r —255+ 273> —6 5 exp <_X) (S.6)

and the fraction F' of live cells in this nearly spherical tumour-cell cluster is

Va A A2 A3 A3 r
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where, obviously, the cluster radius is a function of time, r = r(t).
A series expansion of the exponential in (S.7) leads to the following series for F'(t):

oo
1 T\
F(r) = 62 m+3) (X> (S.8)

n=0
and we see that limy_,o, F'(r) = 1 (i.e., in the limit of a very large A all cells are alive),
and that lim, o F'(r) = 1 for all X’s.
Moreover, for very large radii, F'(r) ~ 3\/r: this is a rather obvious result if we think
that in very large tumour spheroids, the live volume is limited to a thin shell of nearly
constant thickness ~ A, and volume V, ~ 47r?X. Thus the fraction of live cells is
F(r) ~ 472\ /(4713 /3) = 3\ /r for very large radii.

1.3 Approximate form of the total live cell fraction F(r)

If we assume a fixed, size-independent decay constant A, then the leading term for large
radii in equation (S.7) is 3\/r. Such an asymptotic behaviour, as well as the limit
lim, o F'(r) = 1, can also be obtained with a much simpler F-function:

3\

F = S.9
3N+ (8.9)
so that ted \
Tre 3
w(r) = 1
Vo) = 3~ 3n1r (8.10)

Figure S1 compares the “exact” live-cell fraction (S.7) with the approximate function
(S.9), which seems to be a reasonable approximation in a biological context.
Using the approximate live-cell fraction (S.9), the complete evolution equations are

1% 3\
for the total cluster volume and
dr (1) 3\
Pl IO ey (5:12)

for the cluster radius. The asymptotic (saturation) radius r, corresponds to a vanishing
derivative in equation (S.12), and this yields immediately

3aA
o = —— S.13
roo = 22 (5.13)
The corresponding asymptotic volume is
drrd, 36madA3

Vo = Vi(rag) = —52 = 208 (S.14)

and the asymptotic total fraction of live cells is

A )

Fy =F(re) = 5 (S.15)

o L3\ a+o
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Figure S1: Plot of the fraction of live cells F' vs. r/\ in the exponential model eq. (S.7)
(solid line), and its approximation, eq. (S.9) (dotted line). The maximum difference
between these expressions is less than 5%.

1.4 Size-dependent A\

In the foregoing sections we assumed a constant A, however the computer simulations
indicate that A is weakly size dependent (see figure 1 in the main text):

A(r) = Ao+ Mexp (—r/Q) (S.16)

With this variable A, all the derivations at constant r are left unchanged, while F(r)

becomes
3A(r)

r) = ——————-

(r) r 4+ 3X\(r)
This expression has the same asymptotic behaviour as the simpler expression (S.9) (see
figure S2).

(S.17)

1.5 The model recast as a differential system

As explained in the main text, the model can be recast as a differential system. The
differential equation for volume can be written in the following form:
av

g = e+ ) F(t) - V() (S-18)
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Figure S2: Plot of the fraction of live cells F' vs. r (um), with variable (solid, blue line)
A(r) and fixed (dotted, red line) \.. Here the A(r) is the same as in Fig. 1C in the main
text (i.e., A(r) = Ao + A1 exp(—7/(), with \g = 49 pm, A\; = 444 pm, and ¢ = 92 pum),
and A, = A\g = 49 um.

and therefore we can also write
— =()V(t S.19
=V () (5.19)
where the v function is defined as follows

Va(t)

1) = (a0 F#) =5 = (a +8) 17

) (8.20)

so that v(0) = a. Then, taking the derivative of expression (S.20), we find

dy dF 1 dV, Vo) dv\ (a+0d) (dV, Vi(t)dV
et gy =latd) <V(t) TRE t)dt>_ 70 <dt - V(t)dt>

(S.21)

In the case of the exponentially decaying live-cell fraction (S.4), we can evaluate the
time derivative of V, from

r(t+At) _
Vot + At) = / 4rs? exp( W) ds

A
r(t) O+ A r(t) — 1dr
~ 47s% exp ( > <1 — At) ds
/ /(t A A dt
1
~ Valt) + 4e2 () T ar - L ) (8.22)

dt Adt
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Do _ Tamr2e) - iva@)} V)% = (V1) — Vel () (5.2)
and finally
‘C% - (C;‘/J(;)‘s ) [v(t)V (t) — gva(t)w(t) “/;((;)) 'V(t)V(t)}
= | (G 1) Fom -] (524
We already know that lim, o F(r) = 1, and that lim,_, F(r) = 0, and we notice that
lim 3%F(r) =1 (S.25)

then the term in square brackets in expression (S.24)

r(t)
( ) + 1) F(t)—1 (S.26)
vanishes both at » = 0 and » — co. An analytical study of this expression that utilizes
expression (S.7) involves transcendental equations: however, the resulting expression
depends on the single scale factor A and therefore we obtain a fairly complete information
on it simply plotting it vs. r/\ (see figure S3). The equation for the position of the
maximum can be solved numerically, and it yields ro ~ 3.63231 .

To summarize: the present model can be written as a differential system

T = Sove (5.272)
‘(% — —(a+d) [(T?)(i) + 1) F(t) - 1] ~(#) (S.27D)

with y(0) = a.

1.6 The differential system that describes the Gompertz model
The Gompertz model is defined by the single equation

V(t) = V(0)exp [aG (1 - 6_6Gt>:| (S.28)
Ba
which can be recast in the form of a differential system
av
o = V) (5.29a)
d
¢~ Baalt) (S.29Db)

dt



Distribution of live cells and growth of solid tumours 8

0.10~

0.08+

0.06+

0.04+

r/BAr+1v-1

0.02+

0.00

r/A

0.002~

0.001t

0.000

-0.001-

—-0.002-

—0.003}

—0.004-

r/A

Figure S3: Upper panel: plot of the expression (S.26). The maximum is at ryg =~
3.63231 A. Notice the wide range r/\: the variation of the expression is compara-
tively slow, the maximum derivative is in the origin. Lower panel: plot of the derivative
of expression (S.26).

with v (t) = age ¢!, and ag = 75/(0).
From the equation for the volume we can also find a corresponding equation for r:

dr r

— = —vq(t S.30

o = 376 (S.30)
therefore r also follows a Gompertz law, but with a modified exponent.

Comparing equations (S.24) and (S.29b), we see that the Gompertz model is a sort
of approximation of the new model, where we replace the slowly varying expression
(a+0)[(r(t)/3X+1) F (r(t)) — 1] in (S.24) with the constant S in (S.29b).
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2 Bayesian methods

In this work we have performed data analysis at several levels: in the case of the indi-
vidual exponential estimates (figure 1A in the main text) we have used straightforward
least-squares fits. Elsewhere we have used the Bayesian inference framework for model
assessment and evidential model comparison. In this section we briefly review Bayesian
inference and the Bayes factors, the basic tool used to rank models (we refer the reader
to the text by Bernardo and Smith (1994) for more details).

2.1 Bayesian inference

Formally, Bayesian inference is statistical inference in which evidence or observations are
used to update or to infer the probability that a hypothesis may be true. To perform
such inference we need to define a way to express our initial beliefs and describe the
process by which some evidence or observations can be used to update these beliefs.

Applying Bayesian inference methods requires the formal representation of the avail-
able knowledge. This should include the statistical model for the problem, and a priori
information about the model parameters, as we assume that the statistical model is
parametric.

In the cases when we have several competing hypotheses about some phenomenon,
and therefore several competing models of it, we also associate an a priori probability
p(M;) to each model, which describes the degree of initial belief that a particular model
is the most appropriate one to describe the observed phenomenon.

Our initial beliefs (initial state of information) about the values of parameters of
each available statistical model of the system are, most often, uncertain and therefore
distributed according to some probability density function p(6;|M;). This probability
distribution is called “a prior distribution of model parameters”.

When some new information D about the modelled phenomenon is acquired, we
update our beliefs according to Bayes’ theorem. The updated distribution of our beliefs
is called “a posterior distribution of model parameters”. D can correspond to the data
from a newly performed experiment, or new information published in a recent paper.
Bayes’ theorem defines how the posterior can be obtained from the prior, generally:

p(D[M;, 0;) - p(6:|M;)

p(0il M, D) = [ p(D|M;, 6;) - p(6;| M;)d6; (8:31)

Here the probability p(D|M;, 0;) to produce data D with model M; given parameters 0;
is called “likelihood” (see, for example, Cox and Hinkley, 1974; Gelman et al., 1995).
In this paper we consider two complex models defined using non-linear ordinary
differential equations. In cases such as these, it is not possible to perform inference
analytically due to the complexity of the integrals involved, and we need some numerical
methods to be able to evaluate the posteriors, such as the Monte Carlo methods (Robert
and Casella, 2004; Gilks et al., 1995). We employed the Sequential Monte Carlo (SMC)
sampler proposed by Del Moral et al. (2006) to find parameter posteriors for our models.
This sampler employs a strategy of sequential importance sampling starting with an easy
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to sample prior distribution and eventually converging to the desired posterior, through
a sequence of artificial intermediate distributions (Neal, 2001).

2.2 Model Comparison and Bayes Factors

The methodology presented in this section allows one to rank competing hypotheses by
the evidential support from experimental data, and therefore evaluate relative confidence
values for such hypotheses. A complete comprehensive overview of Bayes factors and
model comparison can be found, e.g., in Kass and Raftery (1995).

In the cases when a discrete set of competing hypotheses is considered, the hypotheses
can be ranked by the ratio of their posterior probabilities. For a pair of hypotheses H;
and Hs represented with models M and M the ratio is

M|D
p(M|D) (5.32)
p(Mz|D)
Taking a prior distribution of beliefs in preference of each hypotheses 7 into account,
and in the case when hypotheses are represented by parametric models, this ratio is:
p(Mi|D) _ m(My) p(D|Mi)  w(Mi) [ p(D|My,61) - p(61]My)do,

pOBID) = 7 (05~ p(DIh) — 7 (05) ~ Tp(DIih.6a) - plbalii)ds )

The ratio of the marginal likelihoods for two competing hypotheses:

fp(D|M1701) p(ellMl)d&
[ p(D|M3,62) - p(62]| M) db-

(S.34)

is called the Bayes factor.

Bayes factors are used to test competing hypotheses, and update corresponding be-
liefs using formula (S.33).

When using models with continuous parameter space the problem becomes quite
complex, as Bayes factors have to be evaluated by integration. In the vast majority
of practical problems these integrals cannot be evaluated analytically, and therefore
numerical methods are required to estimate them. These integrals are called marginal
likelihoods, and we give a brief overview of some numerical methods to estimate them
in the next section (see Section 2.3).

The Bayes factor is a summary of the evidence provided by the data in favor of one
hypothesis, represented by a model, as opposed to another. Jeffreys (1961) suggested
interpreting Bayes factors in half-units on the log;, scale. Pooling two of his categories
together for simplification we display his scale in Table S1.

These categories are not a calibration of the Bayes factor, as it already provides a
meaningful interpretation as probability, but rather a rough descriptive statement about
standards of evidence in scientific investigation.

Kass and Raftery (1995) propose a slight modification to this scale, and use natural
logarithms instead. This modified scale is shown in Table S2.

There are a number of publications on the controversy between Bayesian and non-
Bayesian testing procedures. The following four issues are usually considered:
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log,o(B) B Evidence support

0to1/2 1to3.2  Not worth more than a bare mention
1/2to1l 3.2to 10 Substantial

1to 2 10 to 100  Strong

> 2 > 100 Decisive

Table S1: Interpretation of the Bayes factor as evidence support categories according to
Jeffreys (1961)

2In(B) B Evidence support

0 to 2 1to3 Not worth more than a bare mention
2to6 3to20 Positive

6 to 10 20 to 150 Strong

> 10 > 150 Very strong

Table S2: Interpretation of the Bayes factor as evidence support categories according to
Kass and Raftery (1995)

1. P values used in non-Bayesian significance testing are not similar to the poste-
rior probability that the null hypotheses is correct. Jeffreys (1961) considers this
problem and discusses the results obtained with both approaches.

2. Non-Bayesian tests tend to reject null hypotheses in very large samples, whereas
Bayes factors do not. This has been a problem in sociology, where the data sets can
contain thousands of cases. Facing this problem, sociologists have taken to ignoring
significance tests and using other criteria and informal methods when comparing
models. An example with n = 113,566 samples was discussed by Raftery (1986),
where a meaningful model that explained 99.7% of the deviance was rejected by
a standard chi-squared test with a P value of about 107'?° but was nevertheless
favored by the Bayes factor. Bayes factors are now widely used in sociology, usually
with BIC (Bayesian Information Criterion) as an approximation.

3. Bayes factors can be applied to both nested! and non-nested models, while ap-
plication of non-Bayesian significance tests to non-nested models is difficult. This
problem is briefly discussed in Kass and Raftery (1995).

4. Non-Bayesian significance tests were designed for comparison of two models, but
practical data analysis often involves more than two models, at least implicitly. In
such a case, performing multiple significance tests to guide a search for the best
model can give very misleading results (e.g. Freedman, 1983). This problem can
be avoided by taking model uncertainty into account and employing Bayes factors

'Nested models are statistical models with model parameters arranged in a hierarchical structure.
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(e.g. Raftery et al., 1993).

Arkinson (1978) has noted some examples when Bayes factors favored the simpler
model Hy even when a more complex model H; was correct. Smith and Spiegelhalter
(1980) demonstrated that this occurs only when the models are so close that there is
almost no loss in predictive power when cutting back to the simpler model, so that Bayes
factors can be considered as a fully automatic Occam’s razor?.

In our paper we rely on the hypotheses testing results obtained with Bayes factors.
However, computing such Bayes factors is a challenging problem, as the marginal likeli-
hoods for nonlinear models have to be evaluated to obtain these. In the following section

we discuss alternative methods for estimation of the marginal likelihoods.

2.3 Estimation of the Marginal Likelihoods

Evaluation of marginal likelihoods is required to perform hypotheses testing and model
comparison with Bayes factors. A review of different methods for evaluating marginal
likelihoods can be found in Newton and Raftery (1994), Kass and Raftery (1995), and
Chib (1995).

The main problem is that the marginal likelihood

p(DIA) = [ p(DIA,0) - p(6l0)d0 (5.35)

can be evaluated analytically only in very special cases, e.g. when the likelihood belongs
to the exponential family, and conjugate priors are used. The models considered in
our paper are based on nonlinear ordinary differential equations that contribute to the
likelihood. In such cases analytical integration of the marginal likelihood is impossible.
Brute force numerical integration can rarely be applied as it quickly becomes computa-
tionally intractable. This leaves us with the only practical option of considering methods
for approximate evaluation of marginal likelihoods. We use thermodynamic integration
or path sampling methods (Ogata, 1989; Gelman, 1998) for approximate estimation of
marginal likelihoods.

The method of thermodynamic integration originates in Statistical Physics (for an
overview see Neal, 1993), where the marginal likelihood is equivalent to the so-called
partition function and its logarithm to the free energy. The computations required to
perform thermodynamic integration are still quite intensive, but the results are usually
more stable (Gelman, 1998).

This method is based on the following principles: suppose that there are two unnor-
malized distributions ¢o(0) and ¢ (@), defined on the same parameter space ©. We can
normalize these densities dividing them by normalization constants.

pi(0) = %%’(9)7 i=0,1, (S.36)

20ccam’s razor is a principle which states that the explanation of any phenomenon should make as
few assumptions as possible. Thus, the simplest model which explains the evidence sufficiently should
be chosen as the most appropriate one.
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where
7 = / 4:(6)d0, i = 0,1 (8.37)
©
To perform the evaluation of log-ratio
7
p=1In (1> =InZ —InZ, (S.38)
Zo

a continuous and differentiable path (gg)o<g<i can be defined in the space of unnormal-
ized densities, joining qg and ¢;. Similarly,

pp(0) = Zlﬂqg(ﬁ), (S.39)
where
Zg = /@qﬁ(e)d& (S.40)

Taking the derivative of In Zz with respect to 3:

omZs 10Zs 1 9
08  Zs 08 Z308 Jo
_ 1 3qﬁ(9)d9:/ L 945(9) 4509)
Zg Jo OB o0qs0) 0B Zg
0lngp(0) O0lngp(0)

_ /@ g pa0)d = By o [35}’ (5.41)

where E, () [---] is the expectation with respect to pg(f). Defining the potential

(6)do

_ Oln q3(0)

U= —a5 (S.42)
we obtain 91 Z
n
5% b = B, U (S.43)
Integrating over [0, 1] yields the log-ratio u:
Loz 1
p=InZ —InZy = /0 7 Bag = /0 B, o) U] d. (S.44)

To compute this integral, a Sequential Monte Carlo sampler is usually run over
a sequence of bridging distributions pg. Expectations of the potential can then be
estimated as averages on these samples. This computation is performed for a series of
values of 5 between 0 and 1.

The log-ratio x can then be estimated by numerical integration using trapezoidal (as
in Friel and Pettitt, 2006) or Simpson’s scheme (as in Lartillot and Philippe, 2006).
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Assuming that go(@) above is the prior p(6|M), and ¢;(0) is the unnormalized poste-
rior p(D|M, 0)p(8| M), and the corresponding normalization constants are Zy = 1 (as the
prior is already normalized) and Z; = p(D|M ), the resulting log-ratio y is the logarithm
of the marginal likelihood.

Defining gg(f) as a path in the probability densities space which connects the prior

and the posterior:
g5(0) = p(D|M, 0)°p(6| M), (S.45)

the potential takes a simple form:

U) = 0 lnaqg (9)

Then, the logarithm of the marginal likelihood we are seeking an estimate for is

= Inp(D|M,0). (S.46)

1
Inp(DIM)=p=InZ; —InZ, = / Ey .0 [Inp(D[M, 0)] d. (S.47)
0

There are a number of ways to select a schedule for 8 to estimate this integral. In
our paper, we use the schedule proposed by Friel and Pettitt (2006), and select these
values as )
i
N)
Good results can usually be achieved with N € [20,100] and ¢ = 3 or ¢ = 4.

i=0,...,N. (S.48)

Bi = aj, a; =
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3 Results of the Bayesian data analyses

Here we summarize the results of the Bayesian data analyses with a set of figures, which
are referred to in the main text.

o _
o« _|
o
© _|
o
X
< -
S o
o
N
o
o _|
o \ \
Constant lambda Variable lambda

Figure S4: The bar graph shows the a posteriori probabilities of the of the constant-
lambda and of the variable-lambda version of the new model, and it shows that previous
data are not sufficient to discriminate between the two versions of the new model, al-
though there is slightly stronger support for the model with variable-lambda. This
analysis corresponds to the two curves shown in figure 2D.
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Figure S5: Predictive posteriors for the data coming from 91 cell line experiments — all
plots show the spheroid volume (1073mm?) vs. time (days). The plots on the left depict
predictive posteriors produced using the traditional Gompertz model, the central ones
are produced using the new model with constant A, while the right ones are produced
using the new model with variable A. Black crosses correspond to the original data
measurements, while lines show percentiles of model predictions. Each row corresponds
to a separate observed spheroid (here, spheroids 1 to 8).
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Figure S5: (continued) Predictive posteriors for the data coming from 91 cell line exper-
iments — all plots show the spheroid volume (10~3mm?) vs. time (days). The plots on
the left depict predictive posteriors produced using the traditional Gompertz model, the
central ones are produced using the new model with constant A\, while the right ones
are produced using the new model with variable A. Black crosses correspond to the
original data measurements, while lines show percentiles of model predictions. Each row
corresponds to a separate observed spheroid (here, spheroids 9 to 16).
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Figure S5: (continued) Predictive posteriors for the data coming from 91 cell line exper-
iments — all plots show the spheroid volume (10~3mm?) vs. time (days). The plots on
the left depict predictive posteriors produced using the traditional Gompertz model, the
central ones are produced using the new model with constant A\, while the right ones
are produced using the new model with variable A. Black crosses correspond to the
original data measurements, while lines show percentiles of model predictions. Each row
corresponds to a separate observed spheroid (here, spheroids 17 to 24).
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Figure S5: (continued) Predictive posteriors for the data coming from 91 cell line exper-
iments — all plots show the spheroid volume (10~3mm?) vs. time (days). The plots on
the left depict predictive posteriors produced using the traditional Gompertz model, the
central ones are produced using the new model with constant A\, while the right ones
are produced using the new model with variable A. Black crosses correspond to the
original data measurements, while lines show percentiles of model predictions. Each row
corresponds to a separate observed spheroid (here, spheroids 25 to 32).
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Figure S6: Marginals of the parameter posterior for the Gompertz model using the data
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Figure S9: Bayes factors computed using the data from 32 spheroids of the 91 cell line.
The box plot demonstrates that every single Bayes factor prefers the new model with
constant A over the traditional Gompertz model. The categories of evidence support
defined in Table S2 are plotted against our results.
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Figure S10: Bayes factors computed using the data from 32 spheroids of the 91 cell
line. The box plot demonstrates that the new model with variable A is slightly better
supported by the data than the one with constant A\. The categories of evidence support
defined in Table S2 are plotted against our results.
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Figure S11: A posteriori odds of the alternative models given data from 91 cell line
demonstrate that new models are significantly preferred to the traditional Gompertz
model, while the evidence is not very high to decisively prefer the new model with
variable A\ over the one with constant .



Distribution of live cells and growth of solid tumours 25

Spheroid 7 Spheroid 8
o o
— 7] — 7]
© _| @« _|
o o
e | © |
IS} N IS} N
? N o <
< | 3 3 < | 3 3
o 8 (2 o :r' uN)
<~ [
N N
o o
o o
IS 1 1 1 ISH 1 T T
Gompertz 3 parameters 5 parameters Gompertz 3 parameters 5 parameters
Spheroid 9 Spheroid 10
o o
— 7] — 7]
© _| @« _|
o o
© | © |
o X o 3
D S i RN
34 ¥ g 4 3 5
o ™ o o
: [ hs] «
- [To)
N N
o o
o o
o = 1 1 1 c = 1 T T
Gompertz 3 parameters 5 parameters Gompertz 3 parameters 5 parameters
Spheroid 11 Spheroid 12
o o
— 7] 7]
© _| @« _|
o o
© | © |
IS < IS} N
Y K b L
< | o ] = | . 3
o o o o~
by - Q -
1) -
SV N
(=} (=}
o o
o = T T T c = T T T
Gompertz 3 parameters 5 parameters Gompertz 3 parameters 5 parameters

Figure S11: (continued) A posteriori odds of the alternative models given data from
91 cell line demonstrate that new models are significantly preferred to the traditional
Gompertz model, while the evidence is not very high to decisively prefer the new model
with variable A over the one with constant A.
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Figure S11: (continued) A posteriori odds of the alternative models given data from
91 cell line demonstrate that new models are significantly preferred to the traditional
Gompertz model, while the evidence is not very high to decisively prefer the new model
with variable A over the one with constant A.
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Figure S11: (continued) A posteriori odds of the alternative models given data from
91 cell line demonstrate that new models are significantly preferred to the traditional
Gompertz model, while the evidence is not very high to decisively prefer the new model
with variable A over the one with constant A.
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Figure S11: (continued) A posteriori odds of the alternative models given data from
91 cell line demonstrate that new models are significantly preferred to the traditional
Gompertz model, while the evidence is not very high to decisively prefer the new model
with variable A over the one with constant A.
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Figure S11: (continued) A posteriori odds of the alternative models given data from
91 cell line demonstrate that new models are significantly preferred to the traditional
Gompertz model, while the evidence is not very high to decisively prefer the new model
with variable A over the one with constant A.



Distribution of live cells and growth of solid tumours 30

350
300
250
200
150 150
100 ¢~ 100 ¢*

50 50

350
300
250
200

2.5% pi ile ——
25% percentile ------
median

75% percentile
97.5% percentile
Experimental data

30

2.5% percentile ——

25% percentile ------

median -

75% percentile -

97.5% percentile —--—-
Experimental data =

350 ) | 350 ) | 350 2.5% pi "

25% percentile ------

median -

75% percentile -

97.5% percentile —--—-
Experimental data =

75% percentile -
97.5% percentile —--—-
Experimental data =

2.5% percentile ——

25% percentile ------

median -

75% percentile -

97.5% percentile —--—-
Experimental data =

2.5% percentile ——

25% percentile ------

median -

75% percentile -

97.5% percentile —--—-
Experimental data =

400 ) 400 R 400 R 2.5% —_—
350 350 - 350 e 25% percentile ------
300 300 300 median -
250 250 250 75% percentile
200 | 200 200 97.5% percentile -———-
150 po~ 150 b« 150 b« Experimental data =
100 100 100

50 50 50

0 0 0

400 o 400 400 2.5% percentile ——
350 = 350 350 25% percentile
300 300 300 median
250 250 250 75% percentile
200 200 200 97.5% percentile
150 150 150 Experimental data
100 % 100 £~ 100 ~

50 50 50

0 0 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

Figure S12: Predictive posteriors for the data from U118 cell line experiments — all plots
show the spheroid radius (um) vs. time (days). The plots on the left depict predictive
posteriors produced using the traditional Gompertz model, the central ones are produced
using the new model with constant A, while the right ones are produced using the new
model with variable A. Black crosses correspond to the original data measurements,
while lines show percentiles of model predictions. Each row corresponds to a separate
observed spheroid (here, spheroids 1 to 8).
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Figure S13: Marginals of the parameter posterior for the Gompertz model using the
data set from the first spheroid of the U118 cell line. The ag and B¢ parameters are in
days~! and o is in pm.
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Figure S14: Marginals of the parameter posterior for the new model with constant A
using the data set from the first spheroid of the U118 cell line. The a and § parameters
are in days~!, A and o are in pym.
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Figure S15: Marginals of the parameter posterior for the new model with variable A
using the data set from the first spheroid of the U118 cell line. The « and § parameters

are in days™', Ao, A1, ¢ and o are in pum.
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Figure S16: Bayes factors computed using the data from 8 spheroids of the U118 cell
line. The box plot demonstrates that every single Bayes factor very strongly prefers the
new model over the traditional Gompertz model. The categories of evidence support
defined in Table S2 are plotted against our results.
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Figure S17: Bayes factors computed using the data from 8 spheroids of the U118 cell
line. The box plot demonstrates that the new model with variable X is slightly better
supported by the data than the one with constant A\. The categories of evidence support
defined in Table S2 are plotted against our results.
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Figure S18: A posteriori odds of the alternative models given data from U118 cell line
demonstrate that new models are significantly preferred to the traditional Gompertz
model, while the evidence is not very high to decisively prefer the new model with
variable A\ over the one with constant .
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Figure S18: (continued) A posteriori odds of the alternative models given data from
U118 cell line demonstrate that new models are significantly preferred to the traditional
Gompertz model, while the evidence is not very high to decisively prefer the new model
with variable A over the one with constant A.
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Figure S19: Predictive posteriors for the data from MCF7 cell line experiments — all
plots show the spheroid radius (um) vs. time (days). The plots on the left depict
predictive posteriors produced using the traditional Gompertz model, the central ones
are produced using the new model with constant A, while the right ones are produced
using the new model with variable A. Black crosses correspond to the original data
measurements, while lines show percentiles of model predictions. Each row corresponds
to a separate spheroid observed (spheroids 1 to 5).
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Figure S20: Marginals of the parameter posterior for the Gompertz model using the
data set from the first spheroid of the MCF cell line. The ag and B¢ parameters are in
days~! and o is in pm.
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Figure S21: Marginals of the parameter posterior for the new model using the data set
from the first spheroid of the MCF7 cell line. The a and § parameters are in days™!, A
and o are in pm.
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Figure S22: Marginals of the parameter posterior for the new model with variable A
using the data set from the first spheroid of the MCF7 cell line. The « and § parameters
are in days™', Ao, A1, ¢ and o are in pum.
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Figure S23: Bayes factors computed using the data from 5 spheroids of the MCF7 cell
line. The box plot demonstrates that every single Bayes factor very strongly prefers the
new model over the traditional Gompertz model. The categories of evidence support
defined in Table S2 are plotted against our results.
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Figure S24: Bayes factors computed using the data from 8 spheroids of the MCF7 cell
line. The box plot demonstrates that the new model with variable X is better supported
by the data than the one with constant A. The categories of evidence support defined
in Table S2 are plotted against our results.
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Figure S25: A posteriori odds of the alternative models given data from MCF7 cell line
demonstrate that new models are significantly preferred to the traditional Gompertz
model, while the evidence is not very high to decisively prefer the new model with
variable A\ over the one with constant .
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