70 research outputs found

    Detection of monosomy 7 in interphase cells of patients with myeloid disorders

    Get PDF
    Six patients, five with acute myeloid leukemia (AML) and one with a myelodysplastic syndrome (MDS), were found to have monosomy 7 by conventional cytogenetics at diagnosis. Repetitive DNA sequences from the heterochromatic region of human chromosomes 1 and 7 were used as probes for in situ hybridization experiments on interphase cells of these patients. A double hybridization protocol was used to reveal the particular chromosomes as distinct spots or clusters of signals within interphase nuclei. The chromosome 1 sequence served as an internal control. Simultaneous detection of the sequences showed the presence of two normal number 1 chromosomes and a missing 7 chromosome from individual cells. While cytogenetic preparations showed only -7 metaphases in 3 AML and 1 MDS patients, in situ hybridization of interphase cells showed many normal cells as well as the presence of -7 in fully mature granulocytes. One AML patient studied in remission showed only normal metaphases yet had 9% interphase cells with a missing 7 and relapsed within 3 months. We conclude that examination of interphase cells by in situ hybridization provides clinically useful data since every cell including mature granulocytes can be examined, the lineage of a cell can be determined, and efficacy of differentiation therapy can be evaluated

    Considerations to Model Heart Disease in Women with Preeclampsia and Cardiovascular Disease

    Full text link
    Preeclampsia is a multifactorial cardiovascular disorder diagnosed after 20 weeks of gestation, and is the leading cause of death for both mothers and babies in pregnancy. The pathophysiology remains poorly understood due to the variability and unpredictability of disease manifestation when studied in animal models. After preeclampsia, both mothers and offspring have a higher risk of cardiovascular disease (CVD), including myocardial infarction or heart attack and heart failure (HF). Myocardial infarction is an acute myocardial damage that can be treated through reperfusion; however, this therapeutic approach leads to ischemic/reperfusion injury (IRI), often leading to HF. In this review, we compared the current in vivo, in vitro and ex vivo model systems used to study preeclampsia, IRI and HF. Future studies aiming at evaluating CVD in preeclampsia patients could benefit from novel models that better mimic the complex scenario described in this article

    Towards engineering heart tissues from bioprinted cardiac spheroids.

    Full text link
    Currentin vivoandin vitromodels fail to accurately recapitulate the human heart microenvironment for biomedical applications. This study explores the use of cardiac spheroids (CSs) to biofabricate advancedin vitromodels of the human heart. CSs were created from human cardiac myocytes, fibroblasts and endothelial cells (ECs), mixed within optimal alginate/gelatin hydrogels and then bioprinted on a microelectrode plate for drug testing. Bioprinted CSs maintained their structure and viability for at least 30 d after printing. Vascular endothelial growth factor (VEGF) promoted EC branching from CSs within hydrogels. Alginate/gelatin-based hydrogels enabled spheroids fusion, which was further facilitated by addition of VEGF. Bioprinted CSs contracted spontaneously and under stimulation, allowing to record contractile and electrical signals on the microelectrode plates for industrial applications. Taken together, our findings indicate that bioprinted CSs can be used to biofabricate human heart tissues for long termin vitrotesting. This has the potential to be used to study biochemical, physiological and pharmacological features of human heart tissue

    Causes of death and comorbidities in hospitalized patients with COVID-19

    Get PDF
    Infection by the new corona virus strain SARS-CoV-2 and its related syndrome COVID-19 has been associated with more than two million deaths worldwide. Patients of higher age and with preexisting chronic health conditions are at an increased risk of fatal disease outcome. However, detailed information on causes of death and the contribution of pre-existing health conditions to death yet is missing, which can be reliably established by autopsy only. We performed full body autopsies on 26 patients that had died after SARS-CoV-2 infection and COVID-19 at the Charite University Hospital Berlin, Germany, or at associated teaching hospitals. We systematically evaluated causes of death and pre-existing health conditions. Additionally, clinical records and death certificates were evaluated. We report findings on causes of death and comorbidities of 26 decedents that had clinically presented with severe COVID-19. We found that septic shock and multi organ failure was the most common immediate cause of death, often due to suppurative pulmonary infection. Respiratory failure due to diffuse alveolar damage presented as immediate cause of death in fewer cases. Several comorbidities, such as hypertension, ischemic heart disease, and obesity were present in the vast majority of patients. Our findings reveal that causes of death were directly related to COVID-19 in the majority of decedents, while they appear not to be an immediate result of preexisting health conditions and comorbidities. We therefore suggest that the majority of patients had died of COVID-19 with only contributory implications of preexisting health conditions to the mechanism of death

    General material properties of Denizli (SW Turkey) travertines as a building stone

    No full text
    The quality and material properties of Denizli travertine as a natural building stone have been investigated. The Denizli region is one of the world's major travertine deposits and production basins. Travertine blocks are extracted from over fifty quarries in the region. In this study, investigations and evaluations of experimental test results of travertine samples from six areas (Kakli{dotless}k-Kocabaş, Honaz-Emirazizli, Aşaǧi{dotless}daǧdere, Akköy, Karaçay and Çivril), which represent the entire Denizli basin, are presented. Kakli{dotless}k-Kocabaş is the biggest production area in the region, and therefore most of the quarries are located in this area. Physical, mechanical, micro-structural and macro-structural properties of the travertine samples are evaluated within the scope of stone quality assessment. Variations of test results by area are presented, and correlations between them are proposed. Test results are also compared with the results of various studies from Turkey and other parts of the world. © 2013 Springer-Verlag Berlin Heidelberg

    NMR insights into the pre-amyloid ensemble and secretion targeting of the curli subunit CsgA

    No full text
    The biofilms of Enterobacteriaceae are fortified by assembly of curli amyloid fibres on the cell surface. Curli not only provides structural reinforcement, but also facilitates surface adhesion. To prevent toxic intracellular accumulation of amyloid precipitate, secretion of the major curli subunit, CsgA, is tightly regulated. In this work, we have employed solution state NMR spectroscopy to characterise the structural ensemble of the pre-fibrillar state of CsgA within the bacterial periplasm, and upon recruitment to the curli pore, CsgG, and the secretion chaperone, CsgE. We show that the N-terminal targeting sequence (N) of CsgA binds specifically to CsgG and that its subsequent sequestration induces a marked transition in the conformational ensemble, which is coupled to a preference for CsgE binding. These observations lead us to suggest a sequential model for binding and structural rearrangement of CsgA at the periplasmic face of the secretion machinery
    corecore