69 research outputs found

    The Role of NF-κB in Breast Cancer Initiation, Growth, Metastasis, and Resistance to Chemotherapy

    Get PDF
    Breast cancer (BC) is the second most fatal disease and is the prime cause of cancer allied female deaths. BC is caused by aberrant tumor suppressor genes and oncogenes regulated by transcription factors (TFs) like NF-κB. NF-κB is a pro-inflammatory TF that crucially alters the expressions of various genes associated with inflammation, cell progression, metastasis, and apoptosis and modulates a network of genes that underlie tumorigenesis. Herein, we focus on NF-κB signaling pathways, its regulators, and the rationale for targeting NF-κB. This review also includes TFs that maintain NF-κB crosstalk and their roles in promoting angiogenesis and metastasis. In addition, we discuss the importance of combination therapies, resistance to treatment, and potential novel therapeutic strategies including nanomedicine that targets NF-κB

    Evolution of Highly Biocompatible and Thermally Stable YVO<sub>4</sub>:Er<sup>3+</sup>/Yb<sup>3+</sup> Upconversion Mesoporous Hollow Nanospheriods as Drug Carriers for Therapeutic Applications

    No full text
    In recent times, upconversion nanomaterials with mesoporous hollow structures have gained significant interest as a prospective nano-platform for cancer imaging and therapeutic applications. In this study, we report a highly biocompatible YVO4:1Er3+/10Yb3+ upconversion mesoporous hollow nanospheriods (YVO4:Er3+/Yb3+ UC-MHNSPs) by a facile and rapid self-sacrificing template method. The Rietveld analysis confirmed their pure phase of tetragonal zircon structure. Nitrogen adsorption–desorption isotherms revealed the mesoporous nature of these UC-MHNSPs and the surface area is found to be ~87.46 m2/g. Under near-infrared excitation (980 nm), YVO4:Er3+/Yb3+ UC-MHNSPs showed interesting color tunability from red to green emission. Initially (at 0.4 W), energy back transfer from Er3+ to Yb3+ ions leads to the strong red emission. Whereas at high pump powers (1 W), a fine green emission is observed due to the dominant three-photon excitation process and traditional energy transfer route from Er3+ to Yb3+ ions. The bright red light from the membrane of HeLa cells confirmed the effective cellular uptake of YVO4:Er3+/Yb3+ UC-MHNSPs. The resonant decrease in cell viability on increasing the concentration of curcumin conjugated YVO4:Er3+/Yb3+ UC-MHNSPs established their excellent antitumor activity. Therefore, the acquired results indicate that these YVO4:Er3+/Yb3+ UC-MHNSPs are promising drug carriers for bioimaging and various therapeutic applications

    Electroactive Ultra-Thin rGO-Enriched FeMoO4 Nanotubes and MnO2 Nanorods as Electrodes for High-Performance All-Solid-State Asymmetric Supercapacitors

    No full text
    A flexible asymmetric supercapacitor (ASC) with high electrochemical performance was constructed using reduced graphene oxide (rGO)-wrapped redox-active metal oxide-based negative and positive electrodes. Thin layered rGO functionality on the positive and the negative electrode surfaces has promoted the feasible surface-active sites and enhances the electrochemical response with a wide operating voltage window. Herein we report the controlled growth of rGO-wrapped tubular FeMoO4 nanofibers (NFs) via electrospinning followed by surface functionalization as a negative electrode. The tubular structure offers the ultrathin-layer decoration of rGO inside and outside of the tubular walls with uniform wrapping. The rGO-wrapped tubular FeMoO4 NF electrode exhibited a high specific capacitance of 135.2 F g&minus;1 in Na2SO4 neutral electrolyte with an excellent rate capability and cycling stability (96.45% in 5000 cycles) at high current density. Meanwhile, the hydrothermally synthesized binder-free rGO/MnO2 nanorods on carbon cloth (rGO-MnO2@CC) were selected as cathode materials due to their high capacitance and high conductivity. Moreover, the ASC device was fabricated using rGO-wrapped FeMoO4 on carbon cloth (rGO-FeMoO4@CC) as the negative electrode and rGO-MnO2@CC as the positive electrode (rGO-FeMoO4@CC/rGO-MnO2@CC). The rationally designed ASC device delivered an excellent energy density of 38.8 W h kg&minus;1 with a wide operating voltage window of 0.0&ndash;1.8 V. The hybrid ASC showed excellent cycling stability of 93.37% capacitance retention for 5000 cycles. Thus, the developed rGO-wrapped FeMoO4 nanotubes and MnO2 nanorods are promising hybrid electrode materials for the development of wide-potential ASCs with high energy and power density

    Two-dimensional materials for high-energy solid-state asymmetric pseudocapacitors with high mass loadings

    No full text
    A porous nanostructure and high mass loading are crucial for a pseudocapacitor to achieve a good electrochemical performance. Although pseudocapacitive materials, such as MnO2 and MoS2, with record capacitances close to their theoretical values have been realized, the achieved capacitances are possible only when the electrode mass loading is less than 1 mg cm−2. Increasing the mass loading affects the capacitance as electron conduction and ion diffusion become sluggish. Achieving fast ion and electron transport at high mass loadings through all active sites remains a challenge for high-mass-loading electrodes. In this study, 2D MnO2 nanosheets supported on carbon fibers (MnO2@CF) as well as MoS2@CF with high mass loadings (6.6 and 7.2 mg cm−2, respectively) were used in a high-energy pseudocapacitor. These hierarchical 2D nanosheets yielded outstanding areal capacitances of 1187 and 495 mF cm−2 at high current densities with excellent cycling stabilities. A pliable pseudocapacitive solid-state asymmetric supercapacitor was designed using MnO2@CF and MoS2@CF as the positive and negative electrodes, respectively, with a high mass loading of 14.2 mg cm−2. The assembled solid-state asymmetric cell had an energy density of 2.305 mWh cm−3 at a power density of 50 mW cm−3 and a capacitance retention of 92.25 % over 11 000 cycles and a very small diffusion resistance (1.72 Ω s−1/2). Thus, it is superior to most state-of-the-art reported pseudocapacitors. The rationally designed nanostructured electrodes with high mass loading are likely to open up new opportunities for the development of a supercapacitor device capable of supplying higher energy and power.</p
    corecore