1,109 research outputs found

    The loss of material from the cathode of metal arcs

    Get PDF
    A study was made of the effect of arc length, cathode thickness, current strength, gas pressure and the chemical nature of the cathode material and filling gases upon the material loss from Cu, Fe, and Ag cathodes in arcs. The results show that the analysis of the phenomenon is complex and the energy balance is difficult to formulate

    Constraining the Distribution of L- & T-Dwarfs in the Galaxy

    Full text link
    We estimate the thin disk scale height of the Galactic population of L- & T-dwarfs based on star counts from 15 deep parallel fields from the Hubble Space Telescope. From these observations, we have identified 28 candidate L- & T- dwarfs based on their (i'-z') color and morphology. By comparing these star counts to a simple Galactic model, we estimate the scale height to be 350+-50 pc that is consistent with the increase in vertical scale with decreasing stellar mass and is independent of reddening, color-magnitude limits, and other Galactic parameters. With this refined measure, we predict that less than 10^9 M_{sol} of the Milky Way can be in the form L- & T- dwarfs, and confirm that high-latitude, z~6 galaxy surveys which use the i'-band dropout technique are 97-100% free of L- & T- dwarf interlopers.Comment: 4 pages, 4 figures, accepted to ApJ

    No variations in transit times for Qatar-1 b

    Full text link
    The transiting hot Jupiter planet Qatar-1 b was presented to exhibit variations in transit times that could be of perturbative nature. A hot Jupiter with a planetary companion on a nearby orbit would constitute an unprecedented planetary configuration, important for theories of formation and evolution of planetary systems. We performed a photometric follow-up campaign to confirm or refute transit timing variations. We extend the baseline of transit observations by acquiring 18 new transit light curves acquired with 0.6-2.0 m telescopes. These photometric time series, together with data available in the literature, were analyzed in a homogenous way to derive reliable transit parameters and their uncertainties. We show that the dataset of transit times is consistent with a linear ephemeris leaving no hint for any periodic variations with a range of 1 min. We find no compelling evidence for the existence of a close-in planetary companion to Qatar-1 b. This finding is in line with a paradigm that hot Jupiters are not components of compact multi-planetary systems. Based on dynamical simulations, we place tighter constraints on a mass of any fictitious nearby planet in the system. Furthermore, new transit light curves allowed us to redetermine system parameters with the precision better than that reported in previous studies. Our values generally agree with previous determinations.Comment: Accepted for publication in A&

    Site of Blood Vessel Damage and Relevance of CD18 in a Murine Model of Immune Complex-Mediated Vasculitis

    Get PDF
    How neutrophils (polymorphonuclear neutrophils, PMNs) damage vessels in leukocytoclastic vasculitis (LcV) mediated by immune complexes (ICs) is unclear. If degradative enzymes and oxygen radicals are released from PMNs while adhering to the inner side of the vessel wall, they could be washed away by the blood stream or neutralized by serum protease inhibitors. We investigated if in LcV PMNs could damage vessels from the tissue side after transmigration. We used CD18-deficient (CD18−/−) mice because the absence of CD18 excludes transmigration of PMNs. When eliciting the Arthus reaction in ears of CD18−/− mice, deposition of ICs was not sufficient to recruit PMNs or to induce IC-mediated LcV. Injection of PMNs intradermally in CD18−/− mice allowed us to investigate if bypassing diapedesis and placing PMNs exclusively on the abluminal side leads to vascular destruction. We found that injected PMNs gathered around perivascular ICs, but did not cause vessel damage. Only intravenous injection of wild-type PMNs could re-establish the Arthus reaction in CD18−/− mice. Thus, PMNs cause vessel damage during diapedesis from the luminal side, but not from the perivascular space. We suggest that in order to shield the cytotoxic products from the blood stream, ICs induce particularly tight interactions between them, PMNs and endothelial cells

    Large scale relative protein ligand binding affinities using non-equilibrium alchemy.

    No full text
    Ligand binding affinity calculations based on molecular dynamics (MD) simulations and non-physical (alchemical) thermodynamic cycles have shown great promise for structure-based drug design. However, their broad uptake and impact is held back by the notoriously complex setup of the calculations. Only a few tools other than the free energy perturbation approach by Schrodinger Inc. (referred to as FEP+) currently enable end-to-end application. Here, we present for the first time an approach based on the open-source software pmx that allows to easily set up and run alchemical calculations for diverse sets of small molecules using the GROMACS MD engine. The method relies on theoretically rigorous non-equilibrium thermodynamic integration (TI) foundations, and its flexibility allows calculations with multiple force fields. In this study, results from the Amber and Charmm force fields were combined to yield a consensus outcome performing on par with the commercial FEP+ approach. A large dataset of 482 perturbations from 13 different protein-ligand datasets led to an average unsigned error (AUE) of 3.64 +/- 0.14 kJ mol(-1), equivalent to Schrodinger's FEP+ AUE of 3.66 +/- 0.14 kJ mol(-1). For the first time, a setup is presented for overall high precision and high accuracy relative protein-ligand alchemical free energy calculations based on open-source software

    Radial velocities for the Hipparcos-Gaia Hundred-Thousand-Proper-Motion project

    Full text link
    (abridged) The Hundred-Thousand-Proper-Motion (HTPM) project will determine the proper motions of ~113500 stars using a 23-year baseline. The proper motions will use the Hipparcos data, with epoch 1991.25, as first epoch and the first intermediate-release Gaia astrometry, with epoch ~2014.5, as second epoch. The expected HTPM proper-motion standard errors are 30-190 muas/yr, depending on stellar magnitude. Depending on the characteristics of an object, in particular its distance and velocity, its radial velocity can have a significant impact on the determination of its proper motion. The impact of this perspective acceleration is largest for fast-moving, nearby stars. Our goal is to determine, for each star in the Hipparcos catalogue, the radial-velocity standard error that is required to guarantee a negligible contribution of perspective acceleration to the HTPM proper-motion precision. We employ two evaluation criteria, both based on Monte-Carlo simulations, with which we determine which stars need to be spectroscopically (re-)measured. Both criteria take the Hipparcos measurement errors into account. For each star in the Hipparcos catalogue, we determine the confidence level with which the available radial velocity and its standard error, taken from the XHIP compilation catalogue, are acceptable. We find that for 97 stars, the radial velocities available in the literature are insufficiently precise for a 68.27% confidence level. We also identify 109 stars for which radial velocities are currently unknown yet need to be acquired to meet the 68.27% confidence level. To satisfy the radial-velocity requirements coming from our study will be a daunting task consuming a significant amount of spectroscopic telescope time. Fortunately, the follow-up spectroscopy is not time-critical since the HTPM proper motions can be corrected a posteriori once (improved) radial velocities become available.Comment: Accepted in A&

    Detailing renal hemodynamics and oxygenation in rats by a combined near-infrared spectroscopy and invasive probe approach

    Get PDF
    We hypothesize that combining quantitative near-infrared spectroscopy (NIRS) with established invasive techniques will enable advanced insights into renal hemodynamics and oxygenation in small animal models. We developed a NIRS technique to monitor absolute values of oxygenated and deoxygenated hemoglobin and of oxygen saturation of hemoglobin within the renal cortex of rats. This NIRS technique was combined with invasive methods to simultaneously record renal tissue oxygen tension and perfusion. The results of test procedures including occlusions of the aorta or the renal vein, hyperoxia, hypoxia, and hypercapnia demonstrated that the combined approach, by providing different but complementary information, enables a more comprehensive characterization of renal hemodynamics and oxygenation

    Knockout of PARG110 confers resistance to cGMP-induced toxicity in mammalian photoreceptors.

    Get PDF
    Hereditary retinal degeneration (RD) relates to a heterogeneous group of blinding human diseases in which the light sensitive neurons of the retina, the photoreceptors, die. RD is currently untreatable and the underlying cellular mechanisms remain poorly understood. However, the activity of the enzyme poly-ADP-ribose polymerase-1 (PARP1) and excessive generation of poly-ADP-ribose (PAR) polymers in photoreceptor nuclei have been shown to be causally involved in RD. The activity of PARP1 is to a large extent governed by its functional antagonist, poly-ADP-glycohydrolase (PARG), which thus also may have a role in RD. To investigate this, we analyzed PARG expression in the retina of wild-type (wt) mice and in the rd1 mouse model for human RD, and detected increased PARG protein in a subset of degenerating rd1 photoreceptors. Knockout (KO) animals lacking the 110 kDa nuclear PARG isoform were furthermore analyzed, and their retinal morphology and function were indistinguishable from wild-type animals. Organotypic wt retinal explants can be experimentally treated to induce rd1-like photoreceptor death, but PARG110 KO retinal explants were unexpectedly highly resistant to such treatment. The resistance was associated with decreased PAR accumulation and low PARP activity, indicating that PARG110 may positively regulate PARP1, an event that therefore is absent in PARG110 KO tissue. Our study demonstrates a causal involvement of PARG110 in the process of photoreceptor degeneration. Contrasting its anticipated role as a functional antagonist, absence of PARG110 correlated with low PARP activity, suggesting that PARG110 and PARP1 act in a positive feedback loop, which is especially active under pathologic conditions. This in turn highlights both PARG110 and PARP1 as potential targets for neuroprotective treatments for RD

    Verification and validation of numerical models of the transport of insulation debris

    Get PDF
    Damage to insulation materials located near to a primary circuit coolant leak may compromise the operation of the emergency core cooling system (ECCS). Insulation material in the form of mineral wool fiber agglomerates (MWFA) maybe transported to the containment sump strainers, where they may block or penetrate the strainers. Though the impact of MWFA on the pressure drop across the strainers is minimal, corrosion products formed over time may also accumulate in the fiber cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz is investigating the phenomena that maybe observed in the containment vessel during a primary circuit coolant leak. The study entails the generation of fiber agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effect that corrosion and erosion of the containment internals by the coolant has on the strainer pressure drop. The focus of this paper is on the verification and validation of numerical models that can predict the transport of MWFA. A number of pseudo-continuous dispersed phases of spherical wetted agglomerates represent the MWFA. The size, density, the relative viscosity of the fluid-fiber agglomerate mixture and the turbulent dispersion all affect how the fiber agglomerates are transported. In the cases described here, the size is kept constant while the density is modified. This definition affects both the terminal velocity and volume fraction of the dispersed phases. Note that the relative viscosity is only significant at high concentrations. Three single effect experiments were used to provide validation data on the transport of the fiber agglomerates under conditions of sedimentation in quiescent fluid, sedimentation in a horizontal flow and suspension in a horizontal flow. The experiments were performed in a rectangular column for the quiescent fluid and a racetrack type channel that provided a near uniform horizontal flow. The numerical models of sedimentation in the column and the racetrack channel found that the sedimentation characteristics are consistent with the experiments. For channel suspension, the heavier fibers tend to accumulate at the channel base even at high velocities, while lighter phases are more likely to be transported around the channel
    • 

    corecore