682 research outputs found

    Need for international business concepts in the curriculum

    Get PDF
    With the continued increase in international business, business education has an obligation to reflect this trend. There are two methods for incorporating international business concepts into the curriculum: infusion and creation. Ideally, this obligation would be completed with a standalone course in international business. However, it can also be accomplished through incorporating international business concepts into current curriculum. Business programs need to include international aspects into the curriculum to help the students understand the economy in which they live

    Communicating the Value of Ergonomics to Management – Part 2: Ergonomics ROI Case Study Applications

    Get PDF
    More than ever, human factors engineers and ergonomists need to justify our practice’s value to management. How can we effectively communicate with management? How should we present a Return on Investment (ROI) that leadership will find useful that addresses company profits, cost savings, productivity, first time quality, and turnover? What else does management care about other than ROI? This second panel in a two panel series will specifically highlight case studies in which presenters give examples of situations in which ROI for ergonomics was investigated from a business value. The session will start with four case study lectures followed by a panel discussion led by the moderators. The audience will be encouraged to participate with their own questions and comments

    Honey bee foraging distance depends on month and forage type

    Get PDF
    To investigate the distances at which honey bee foragers collect nectar and pollen, we analysed 5,484 decoded waggle dances made to natural forage sites to determine monthly foraging distance for each forage type. Firstly, we found significantly fewer overall dances made for pollen (16.8 %) than for non-pollen, presumably nectar (83.2 %; P < 2.2 × 10−23). When we analysed distance against month and forage type, there was a significant interaction between the two factors, which demonstrates that in some months, one forage type is collected at farther distances, but this would reverse in other months. Overall, these data suggest that distance, as a proxy for forage availability, is not significantly and consistently driven by need for one type of forage over the other

    A Leptin-regulated Circuit Controls Glucose Mobilization During Noxious Stimuli

    Get PDF
    Adipocytes secrete the hormone leptin to signal the sufficiency of energy stores. Reductions in circulating leptin concentrations reflect a negative energy balance, which augments sympathetic nervous system (SNS) activation in response to metabolically demanding emergencies. This process ensures adequate glucose mobilization despite low energy stores. We report that leptin receptor–expressing neurons (LepRb neurons) in the periaqueductal gray (PAG), the largest population of LepRb neurons in the brain stem, mediate this process. Application of noxious stimuli, which often signal the need to mobilize glucose to support an appropriate response, activated PAG LepRb neurons, which project to and activate parabrachial nucleus (PBN) neurons that control SNS activation and glucose mobilization. Furthermore, activating PAG LepRb neurons increased SNS activity and blood glucose concentrations, while ablating LepRb in PAG neurons augmented glucose mobilization in response to noxious stimuli. Thus, decreased leptin action on PAG LepRb neurons augments the autonomic response to noxious stimuli, ensuring sufficient glucose mobilization during periods of acute demand in the face of diminished energy stores

    Specific Subpopulations of Hypothalamic Leptin Receptor-Expressing Neurons Mediate the Effects of Early Developmental Leptin Receptor Deletion on Energy Balance

    Get PDF
    ACKNOWLEDGEMENTS We thank MedImmune, Inc. and James Trevaskis, PhD and Christopher Rhodes, PhD for the gift of leptin. We thank members of the Myers and Olson labs for helpful discussions. Research support was provided by the Michigan Diabetes Research Center (NIH P3 0 DK020572, including the Molecular Genetics, Animal Phenotyping, and Clinical Cores), the American Diabetes Association (MGM), the Marilyn H. Vincent Foundation (MGM), the NIH (MGM: D K05673 1; ACR:DK071212; MBA: DK097861), the BBSRC (LKH: BB/NO17838/1) and WellcomeTrust (LKH: 098012).Peer reviewedPublisher PD

    On the rate of quantum ergodicity in Euclidean billiards

    Full text link
    For a large class of quantized ergodic flows the quantum ergodicity theorem due to Shnirelman, Zelditch, Colin de Verdi\`ere and others states that almost all eigenfunctions become equidistributed in the semiclassical limit. In this work we first give a short introduction to the formulation of the quantum ergodicity theorem for general observables in terms of pseudodifferential operators and show that it is equivalent to the semiclassical eigenfunction hypothesis for the Wigner function in the case of ergodic systems. Of great importance is the rate by which the quantum mechanical expectation values of an observable tend to their mean value. This is studied numerically for three Euclidean billiards (stadium, cosine and cardioid billiard) using up to 6000 eigenfunctions. We find that in configuration space the rate of quantum ergodicity is strongly influenced by localized eigenfunctions like bouncing ball modes or scarred eigenfunctions. We give a detailed discussion and explanation of these effects using a simple but powerful model. For the rate of quantum ergodicity in momentum space we observe a slower decay. We also study the suitably normalized fluctuations of the expectation values around their mean, and find good agreement with a Gaussian distribution.Comment: 40 pages, LaTeX2e. This version does not contain any figures. A version with all figures can be obtained from http://www.physik.uni-ulm.de/theo/qc/ (File: http://www.physik.uni-ulm.de/theo/qc/ulm-tp/tp97-8.ps.gz) In case of any problems contact Arnd B\"acker (e-mail: [email protected]) or Roman Schubert (e-mail: [email protected]

    Contrasting prefrontal cortex contributions to episodic memory dysfunction in behavioural variant frontotemporal dementia and alzheimer's disease

    Get PDF
    Recent evidence has questioned the integrity of episodic memory in behavioural variant frontotemporal dementia (bvFTD), where recall performance is impaired to the same extent as in Alzheimer's disease (AD). While these deficits appear to be mediated by divergent patterns of brain atrophy, there is evidence to suggest that certain prefrontal regions are implicated across both patient groups. In this study we sought to further elucidate the dorsolateral (DLPFC) and ventromedial (VMPFC) prefrontal contributions to episodic memory impairment in bvFTD and AD. Performance on episodic memory tasks and neuropsychological measures typically tapping into either DLPFC or VMPFC functions was assessed in 22 bvFTD, 32 AD patients and 35 age- and education-matched controls. Behaviourally, patient groups did not differ on measures of episodic memory recall or DLPFC-mediated executive functions. BvFTD patients were significantly more impaired on measures of VMPFC-mediated executive functions. Composite measures of the recall, DLPFC and VMPFC task scores were covaried against the T1 MRI scans of all participants to identify regions of atrophy correlating with performance on these tasks. Imaging analysis showed that impaired recall performance is associated with divergent patterns of PFC atrophy in bvFTD and AD. Whereas in bvFTD, PFC atrophy covariates for recall encompassed both DLPFC and VMPFC regions, only the DLPFC was implicated in AD. Our results suggest that episodic memory deficits in bvFTD and AD are underpinned by divergent prefrontal mechanisms. Moreover, we argue that these differences are not adequately captured by existing neuropsychological measures

    Metabolic state alters economic decision making under risk in humans

    Get PDF
    Background: Animals' attitudes to risk are profoundly influenced by metabolic state (hunger and baseline energy stores). Specifically, animals often express a preference for risky (more variable) food sources when below a metabolic reference point (hungry), and safe (less variable) food sources when sated. Circulating hormones report the status of energy reserves and acute nutrient intake to widespread targets in the central nervous system that regulate feeding behaviour, including brain regions strongly implicated in risk and reward based decision-making in humans. Despite this, physiological influences per se have not been considered previously to influence economic decisions in humans. We hypothesised that baseline metabolic reserves and alterations in metabolic state would systematically modulate decision-making and financial risk-taking in humans. Methodology/Principal Findings: We used a controlled feeding manipulation and assayed decision-making preferences across different metabolic states following a meal. To elicit risk-preference, we presented a sequence of 200 paired lotteries, subjects' task being to select their preferred option from each pair. We also measured prandial suppression of circulating acyl-ghrelin (a centrally-acting orexigenic hormone signalling acute nutrient intake), and circulating leptin levels (providing an assay of energy reserves). We show both immediate and delayed effects on risky decision-making following a meal, and that these changes correlate with an individual's baseline leptin and changes in acyl-ghrelin levels respectively. Conclusions/Significance: We show that human risk preferences are exquisitely sensitive to current metabolic state, in a direction consistent with ecological models of feeding behaviour but not predicted by normative economic theory. These substantive effects of state changes on economic decisions perhaps reflect shared evolutionarily conserved neurobiological mechanisms. We suggest that this sensitivity in human risk-preference to current metabolic state has significant implications for both real-world economic transactions and for aberrant decision-making in eating disorders and obesity

    Dance Type and Flight Parameters Are Associated with Different Mushroom Body Neural Activities in Worker Honeybee Brains

    Get PDF
    Background: Honeybee foragers can transmit the information concerning the location of food sources to their nestmates using dance communication. We previously used a novel immediate early gene, termed kakusei, to demonstrate that the neural activity of a specific mushroom body (MB) neuron subtype is preferentially enhanced in the forager brain. The sensory information related to this MB neuron activity, however, remained unclear. Methodology/Principal Findings: Here, we used kakusei to analyze the relationship between MB neuron activity and types of foraging behavior. The number of kakusei-positive MB neurons was higher in the round dancers that had flown a short distance than in the waggle dancers that had flown a long distance. Furthermore, the amount of kakusei transcript in the MBs inversely related to the waggle-phase duration of the waggle dance, which correlates with the flight distance. Using a narrow tunnel whose inside was vertically or axially lined, we manipulated the pattern of visual input, which is received by the foragers during flight, and analysed kakusei expression. The amount of kakusei transcript in the MBs was related to the foraging frequency but not to the tunnel pattern. In contrast, the number of kakusei-positive MB neurons was affected by the tunnel patterns, but not related to foraging frequency. Conclusions/Significance: These results suggest that the MB neuron activity depends on the foraging frequency, whereas the number of active MB neurons is related to the pattern of visual input received during foraging flight. Our results sugges
    corecore