2,094 research outputs found

    Query processing of spatial objects: Complexity versus Redundancy

    Get PDF
    The management of complex spatial objects in applications, such as geography and cartography, imposes stringent new requirements on spatial database systems, in particular on efficient query processing. As shown before, the performance of spatial query processing can be improved by decomposing complex spatial objects into simple components. Up to now, only decomposition techniques generating a linear number of very simple components, e.g. triangles or trapezoids, have been considered. In this paper, we will investigate the natural trade-off between the complexity of the components and the redundancy, i.e. the number of components, with respect to its effect on efficient query processing. In particular, we present two new decomposition methods generating a better balance between the complexity and the number of components than previously known techniques. We compare these new decomposition methods to the traditional undecomposed representation as well as to the well-known decomposition into convex polygons with respect to their performance in spatial query processing. This comparison points out that for a wide range of query selectivity the new decomposition techniques clearly outperform both the undecomposed representation and the convex decomposition method. More important than the absolute gain in performance by a factor of up to an order of magnitude is the robust performance of our new decomposition techniques over the whole range of query selectivity

    Shear Modulus of an Elastic Solid under External Pressure as a function of Temperature: The case of Helium

    Full text link
    The energy of a dislocation loop in a continuum elastic solid under pressure is considered within the framework of classical mechanics. For a circular loop, this is a function with a maximum at pressures that are well within reach of experimental conditions for solid helium suggesting, in this case, that dislocation loops can be generated by a pressure-assisted thermally activated process. It is also pointed out that pinned dislocations segments can alter the shear response of solid helium, by an amount consistent with current measurements, without any unpinning.Comment: 5 pages, 3 figure

    Ascending pharyngeal artery collateral circulation simulating internal carotid artery hypoplasia

    Full text link
    Complete occlusion of the cervical segment of the internal carotid artery may result in a collateral circuit between an enlarged ascending pharyngeal artery and the intracranial segment of the internal carotid artery. This anastomosis may simulate a severely stenotic or hypoplastic internal carotid artery. Differentiation between these entities is particularly important if carotid endarterectomy for relief of stenosis is contemplated.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46658/1/234_2004_Article_BF00327693.pd

    Inducing or suppressing the anisotropy in multilayers based on CoFeB

    Full text link
    Controlling the uniaxial magnetic anisotropy is of practical interest to a wide variety of applications. We study Co40_{40}Fe40_{40}B20_{20} single films grown on various crystalline orientations of LiNbO3_3 substrates and on oxidized silicon. We identify the annealing conditions that are appropriate to induce or suppress uniaxial anisotropy. Anisotropy fields can be increased by annealing up to 11 mT when using substrates with anisotropic surfaces. They can be decreased to below 1 mT when using isotropic surfaces. In the first case, the observed increase of the anisotropy originates from the biaxial strain in the film caused by the anisotropic thermal contraction of the substrate when back at room temperature after strain relaxation during annealing. In the second case, anisotropy is progressively removed by applying successive orthogonal fields that are assumed to progressively suppress any chemical ordering within the magnetic film. The method can be applied to CoFeB/Ru/CoFeB synthetic antiferromagnets but the tuning of the anisotropy comes with a decrease of the interlayer exchange coupling and a drastic change of the exchange stiffness

    LINVIEW: Incremental View Maintenance for Complex Analytical Queries

    Full text link
    Many analytics tasks and machine learning problems can be naturally expressed by iterative linear algebra programs. In this paper, we study the incremental view maintenance problem for such complex analytical queries. We develop a framework, called LINVIEW, for capturing deltas of linear algebra programs and understanding their computational cost. Linear algebra operations tend to cause an avalanche effect where even very local changes to the input matrices spread out and infect all of the intermediate results and the final view, causing incremental view maintenance to lose its performance benefit over re-evaluation. We develop techniques based on matrix factorizations to contain such epidemics of change. As a consequence, our techniques make incremental view maintenance of linear algebra practical and usually substantially cheaper than re-evaluation. We show, both analytically and experimentally, the usefulness of these techniques when applied to standard analytics tasks. Our evaluation demonstrates the efficiency of LINVIEW in generating parallel incremental programs that outperform re-evaluation techniques by more than an order of magnitude.Comment: 14 pages, SIGMO

    Statistical Mechanics of Kinks in (1+1)-Dimensions

    Full text link
    We investigate the thermal equilibrium properties of kinks in a classical ϕ4\phi^4 field theory in 1+11+1 dimensions. The distribution function, kink density, and correlation function are determined from large scale simulations. A dilute gas description of kinks is shown to be valid below a characteristic temperature. A double Gaussian approximation to evaluate the eigenvalues of the transfer operator enables us to extend the theoretical analysis to higher temperatures where the dilute gas approximation fails. This approach accurately predicts the temperature at which the kink description breaks down.Comment: 8 pages, Latex (4 figures available on request), LA-UR-92-399

    Electron localization by a magnetic vortex

    Full text link
    We study the problem of an electron in two dimensions in the presence of a magnetic vortex with a step-like profile. Dependending on the values of the effective mass and gyromagnetic factor of the electron, it may be trapped by the vortex. The bound state spectrum is obtained numerically, and some limiting cases are treated analytically.Comment: 8 pages, latex, 4 figure

    Statistical Mechanics of Kinks in (1+1)-Dimensions: Numerical Simulations and Double Gaussian Approximation

    Full text link
    We investigate the thermal equilibrium properties of kinks in a classical \F^4 field theory in 1+11+1 dimensions. From large scale Langevin simulations we identify the temperature below which a dilute gas description of kinks is valid. The standard dilute gas/WKB description is shown to be remarkably accurate below this temperature. At higher, ``intermediate'' temperatures, where kinks still exist, this description breaks down. By introducing a double Gaussian variational ansatz for the eigenfunctions of the statistical transfer operator for the system, we are able to study this region analytically. In particular, our predictions for the number of kinks and the correlation length are in agreement with the simulations. The double Gaussian prediction for the characteristic temperature at which the kink description ultimately breaks down is also in accord with the simulations. We also analytically calculate the internal energy and demonstrate that the peak in the specific heat near the kink characteristic temperature is indeed due to kinks. In the neighborhood of this temperature there appears to be an intricate energy sharing mechanism operating between nonlinear phonons and kinks.Comment: 28 pages (8 Figures not included, hard-copies available), Latex, LA-UR-93-276

    High-Dimensional Feature Selection by Feature-Wise Kernelized Lasso

    Full text link
    The goal of supervised feature selection is to find a subset of input features that are responsible for predicting output values. The least absolute shrinkage and selection operator (Lasso) allows computationally efficient feature selection based on linear dependency between input features and output values. In this paper, we consider a feature-wise kernelized Lasso for capturing non-linear input-output dependency. We first show that, with particular choices of kernel functions, non-redundant features with strong statistical dependence on output values can be found in terms of kernel-based independence measures. We then show that the globally optimal solution can be efficiently computed; this makes the approach scalable to high-dimensional problems. The effectiveness of the proposed method is demonstrated through feature selection experiments with thousands of features.Comment: 18 page

    Saturation properties and incompressibility of nuclear matter: A consistent determination from nuclear masses

    Get PDF
    Starting with a two-body effective nucleon-nucleon interaction, it is shown that the infinite nuclear matter model of atomic nuclei is more appropriate than the conventional Bethe-Weizsacker like mass formulae to extract saturation properties of nuclear matter from nuclear masses. In particular, the saturation density thus obtained agrees with that of electron scattering data and the Hartree-Fock calculations. For the first time using nuclear mass formula, the radius constant r0r_0=1.138 fm and binding energy per nucleon ava_v = -16.11 MeV, corresponding to the infinite nuclear matter, are consistently obtained from the same source. An important offshoot of this study is the determination of nuclear matter incompressibility KK_{\infty} to be 288±\pm 28 MeV using the same source of nuclear masses as input.Comment: 14 latex pages, five figures available on request ( to appear in Phy. Rev. C
    corecore