82 research outputs found

    A Broadly Applicable Strategy for Entry into Homogeneous Nickel(0) Catalysts from Air-Stable Nickel(II) Complexes

    Get PDF
    A series of air-stable nickel complexes of the form L[subscript 2]Ni(aryl) X (L = monodentate phosphine, X = Cl, Br) and LNi(aryl)X (L = bis-phosphine) have been synthesized and are presented as a library of precatalysts suitable for a wide variety of nickel-catalyzed transformations. These complexes are easily synthesized from low-cost NiCl[subscript 2]·6H[subscript 2]O or NiBr[subscript 2]·3H[subscript 2]O and the desired ligand followed by addition of 1 equiv of Grignard reagent. A selection of these complexes were characterized by single-crystal X-ray diffraction, and an analysis of their structural features is provided. A case study of their use as precatalysts for the nickel-catalyzed carbonyl-ene reaction is presented, showing superior reactivity in comparison to reactions using Ni(cod)[subscript 2]. Furthermore, as the precatalysts are all stable to air, no glovebox or inert-atmosphere techniques are required to make use of these complexes for nickel-catalyzed reactions.National Institute of General Medical Sciences (U.S.) (GM63755)National Science Foundation (U.S.). Graduate Research Fellowshi

    The N-Terminal Region of the VP1 Protein of Swine Vesicular Disease Virus Contains a Neutralization Site That Arises upon Cell Attachment and Is Involved in Viral Entry

    No full text
    The N-terminal region of VP1 of swine vesicular disease virus (SVDV) is highly antigenic in swine, despite its internal location in the capsid. Here we show that antibodies to this region can block infection and that allowing the virus to attach to cells increases this blockage significantly. The results indicate that upon binding to the cell, SVDV capsid undergoes a conformational change that is temperature independent and that exposes the N terminus of VP1. This process makes this region accessible to antibodies which block virus entry

    Direct catalytic cross-coupling of organolithium compounds

    Get PDF
    <p>Catalytic carbon-carbon bond formation based on cross-coupling reactions plays a central role in the production of natural products, pharmaceuticals, agrochemicals and organic materials. Coupling reactions of a variety of organometallic reagents and organic halides have changed the face of modern synthetic chemistry. However, the high reactivity and poor selectivity of common organolithium reagents have largely prohibited their use as a viable partner in direct catalytic cross-coupling. Here we report that in the presence of a Pd-phosphine catalyst, a wide range of alkyl-, aryl- and heteroaryl-lithium reagents undergo selective cross-coupling with aryl- and alkenyl-bromides. The process proceeds quickly under mild conditions (room temperature) and avoids the notorious lithium halogen exchange and homocoupling. The preparation of key alkyl-, aryl- and heterobiaryl intermediates reported here highlights the potential of these cross-coupling reactions for medicinal chemistry and material science.</p>
    corecore