79 research outputs found
S-particles at their naturalness limits
We draw attention on a particular configuration of supersymmetric particle
masses, motivated by naturalness and flavour considerations. All its relevant
phenomenological properties for the LHC are described in terms of a few
physical parameters, irrespective of the underlying theoretical model. This
allows a simple characterization of its main features, useful to define a
strategy for its discovery.Comment: 13 pages, 8 figures, added reference
Are solar neutrino oscillations robust?
The robustness of the large mixing angle (LMA) oscillation (OSC)
interpretation of the solar neutrino data is considered in a more general
framework where non-standard neutrino interactions (NSI) are present. Such
interactions may be regarded as a generic feature of models of neutrino mass.
The 766.3 ton-yr data sample of the KamLAND collaboration are included in the
analysis, paying attention to the background from the reaction ^13C(\alpha,n)
^16O. Similarly, the latest solar neutrino fluxes from the SNO collaboration
are included. In addition to the solution which holds in the absence of NSI
(LMA-I) there is a 'dark-side' solution (LMA-D) with sin^2 theta_Sol = 0.70,
essentially degenerate with the former, and another light-side solution (LMA-0)
allowed only at 97% CL. More precise KamLAND reactor measurements will not
resolve the ambiguity in the determination of the solar neutrino mixing angle
theta_Sol, as they are expected to constrain mainly Delta m^2. We comment on
the complementary role of atmospheric, laboratory (e.g. CHARM) and future solar
neutrino experiments in lifting the degeneracy between the LMA-I and LMA-D
solutions. In particular, we show how the LMA-D solution induced by the
simplest NSI between neutrinos and down-type-quarks-only is in conflict with
the combination of current atmospheric data and data of the CHARM experiment.
We also mention that establishing the issue of robustness of the oscillation
picture in the most general case will require further experiments, such as
those involving low energy solar neutrinos.Comment: 13 pages, 6 figures; Final version to appear in JHE
Strange quark mass from Finite Energy QCD sum rules to five loops
The strange quark mass is determined from a new QCD Finite Energy Sum Rule
(FESR) optimized to reduce considerably the systematic uncertainties arising
from the hadronic resonance sector. As a result, the main uncertainty in this
determination is due to the value of . The correlator of
axial-vector divergences is used in perturbative QCD to five-loop order,
including quark and gluon condensate contributions, in the framework of both
Fixed Order (FOPT), and Contour Improved Perturbation Theory (CIPT). The latter
exhibits very good convergence, leading to a remarkably stable result in the
very wide range , where is the radius of the
integration contour in the complex energy (squared) plane. The value of the
strange quark mass in this framework at a scale of 2 GeV is for , respectively.Comment: Additional comments added at the end of the Conclusions, and one
extra reference is given. A note added in proof uses the most recent
determination of Lambda_QCD from ALEPH to narrow down the predictio
Heavy-light quark pseudoscalar and vector mesons at finite temperature
The temperature dependence of the mass, leptonic decay constant, and width of
heavy-light quark peseudoscalar and vector mesons is obtained in the framework
of thermal Hilbert moment QCD sum rules. The leptonic decay constants of both
pseudoscalar and vector mesons decrease with increasing , and vanish at a
critical temperature , while the mesons develop a width which increases
dramatically and diverges at , where is the temperature for
chiral-symmetry restoration. These results indicate the disappearance of
hadrons from the spectral function, which then becomes a smooth function of the
energy. This is interpreted as a signal for deconfinement at . In
contrast, the masses show little dependence on the temperature, except very
close to , where the pseudoscalar meson mass increases slightly by 10-20
%, and the vector meson mass decreases by some 20-30
Hopping between Random Locations: Spectrum and Instanton
Euclidean random matrices appear in a broad class of physical problems
involving disorder. The problem of determining their spectra can be mapped,
using the replica method, into the study of a scalar field theory with an
interaction of the type e^(psi^2). We apply the instanton method to study their
spectral tails.Comment: 9 pages, Revtex, 2 postscript figure
Scale-Invariance and the Strong Coupling Problem
The effective theory of adiabatic fluctuations around arbitrary
Friedmann-Robertson-Walker backgrounds - both expanding and contracting -
allows for more than one way to obtain scale-invariant two-point correlations.
However, as we show in this paper, it is challenging to produce scale-invariant
fluctuations that are weakly coupled over the range of wavelengths accessible
to cosmological observations. In particular, requiring the background to be a
dynamical attractor, the curvature fluctuations are scale-invariant and weakly
coupled for at least 10 e-folds only if the background is close to de Sitter
space. In this case, the time-translation invariance of the background
guarantees time-independent n-point functions. For non-attractor solutions, any
predictions depend on assumptions about the evolution of the background even
when the perturbations are outside of the horizon. For the simplest such
scenario we identify the regions of the parameter space that avoid both
classical and quantum mechanical strong coupling problems. Finally, we present
extensions of our results to backgrounds in which higher-derivative terms play
a significant role.Comment: 17 pages + appendices, 3 figures; v2: typos fixe
Langevin dynamics of the Lebowitz-Percus model
We revisit the hard-spheres lattice gas model in the spherical approximation
proposed by Lebowitz and Percus (J. L. Lebowitz, J. K. Percus, Phys. Rev.{\
144} (1966) 251). Although no disorder is present in the model, we find that
the short-range dynamical restrictions in the model induce glassy behavior. We
examine the off-equilibrium Langevin dynamics of this model and study the
relaxation of the density as well as the correlation, response and overlap
two-time functions. We find that the relaxation proceeds in two steps as well
as absence of anomaly in the response function. By studying the violation of
the fluctuation-dissipation ratio we conclude that the glassy scenario of this
model corresponds to the dynamics of domain growth in phase ordering kinetics.Comment: 21 pages, RevTeX, 14 PS figure
l W nu production at CLIC: a window to TeV scale non-decoupled neutrinos
We discuss single heavy neutrino production e+ e- -> N nu -> l W nu, l = e,
mu, tau, at a future high energy collider like CLIC, with a centre of mass
energy of 3 TeV. This process could allow to detect heavy neutrinos with masses
of 1-2 TeV if their coupling to the electron V_eN is in the range 0.004-0.01.
We study the dependence of the limits on the heavy neutrino mass and emphasise
the crucial role of lepton flavour in the discovery of a positive signal at
CLIC energy. We present strategies to determine heavy neutrino properties once
they are discovered, namely their Dirac or Majorana character and the size and
chirality of their charged current couplings. Conversely, if no signal is
found, the bound V_eN < 0.002-0.006 would be set for masses of 1-2 TeV,
improving the present limit up to a factor of 30. We also extend previous work
examining in detail the flavour and mass dependence of the corresponding limits
at ILC, as well as the determination of heavy neutrino properties if they are
discovered at this collider.Comment: LaTeX 32 pages. Added comments and references. Matches version to
appear in JHE
A Field Range Bound for General Single-Field Inflation
We explore the consequences of a detection of primordial tensor fluctuations
for general single-field models of inflation. Using the effective theory of
inflation, we propose a generalization of the Lyth bound. Our bound applies to
all single-field models with two-derivative kinetic terms for the scalar
fluctuations and is always stronger than the corresponding bound for slow-roll
models. This shows that non-trivial dynamics can't evade the Lyth bound. We
also present a weaker, but completely universal bound that holds whenever the
Null Energy Condition (NEC) is satisfied at horizon crossing.Comment: 16 page
- …