79 research outputs found

    S-particles at their naturalness limits

    Full text link
    We draw attention on a particular configuration of supersymmetric particle masses, motivated by naturalness and flavour considerations. All its relevant phenomenological properties for the LHC are described in terms of a few physical parameters, irrespective of the underlying theoretical model. This allows a simple characterization of its main features, useful to define a strategy for its discovery.Comment: 13 pages, 8 figures, added reference

    Are solar neutrino oscillations robust?

    Get PDF
    The robustness of the large mixing angle (LMA) oscillation (OSC) interpretation of the solar neutrino data is considered in a more general framework where non-standard neutrino interactions (NSI) are present. Such interactions may be regarded as a generic feature of models of neutrino mass. The 766.3 ton-yr data sample of the KamLAND collaboration are included in the analysis, paying attention to the background from the reaction ^13C(\alpha,n) ^16O. Similarly, the latest solar neutrino fluxes from the SNO collaboration are included. In addition to the solution which holds in the absence of NSI (LMA-I) there is a 'dark-side' solution (LMA-D) with sin^2 theta_Sol = 0.70, essentially degenerate with the former, and another light-side solution (LMA-0) allowed only at 97% CL. More precise KamLAND reactor measurements will not resolve the ambiguity in the determination of the solar neutrino mixing angle theta_Sol, as they are expected to constrain mainly Delta m^2. We comment on the complementary role of atmospheric, laboratory (e.g. CHARM) and future solar neutrino experiments in lifting the degeneracy between the LMA-I and LMA-D solutions. In particular, we show how the LMA-D solution induced by the simplest NSI between neutrinos and down-type-quarks-only is in conflict with the combination of current atmospheric data and data of the CHARM experiment. We also mention that establishing the issue of robustness of the oscillation picture in the most general case will require further experiments, such as those involving low energy solar neutrinos.Comment: 13 pages, 6 figures; Final version to appear in JHE

    Strange quark mass from Finite Energy QCD sum rules to five loops

    Full text link
    The strange quark mass is determined from a new QCD Finite Energy Sum Rule (FESR) optimized to reduce considerably the systematic uncertainties arising from the hadronic resonance sector. As a result, the main uncertainty in this determination is due to the value of ΛQCD\Lambda_{QCD}. The correlator of axial-vector divergences is used in perturbative QCD to five-loop order, including quark and gluon condensate contributions, in the framework of both Fixed Order (FOPT), and Contour Improved Perturbation Theory (CIPT). The latter exhibits very good convergence, leading to a remarkably stable result in the very wide range s0=1.04.0GeV2s_0 = 1.0 - 4.0 {GeV}^2, where s0s_0 is the radius of the integration contour in the complex energy (squared) plane. The value of the strange quark mass in this framework at a scale of 2 GeV is ms(2GeV)=95±5(111±6)MeVm_s(2 {GeV}) = 95 \pm 5 (111 \pm 6) {MeV} for ΛQCD=420(330)MeV\Lambda_{QCD} = 420 (330) {MeV}, respectively.Comment: Additional comments added at the end of the Conclusions, and one extra reference is given. A note added in proof uses the most recent determination of Lambda_QCD from ALEPH to narrow down the predictio

    Heavy-light quark pseudoscalar and vector mesons at finite temperature

    Full text link
    The temperature dependence of the mass, leptonic decay constant, and width of heavy-light quark peseudoscalar and vector mesons is obtained in the framework of thermal Hilbert moment QCD sum rules. The leptonic decay constants of both pseudoscalar and vector mesons decrease with increasing TT, and vanish at a critical temperature TcT_c, while the mesons develop a width which increases dramatically and diverges at TcT_c, where TcT_c is the temperature for chiral-symmetry restoration. These results indicate the disappearance of hadrons from the spectral function, which then becomes a smooth function of the energy. This is interpreted as a signal for deconfinement at T=TcT=T_c. In contrast, the masses show little dependence on the temperature, except very close to TcT_c, where the pseudoscalar meson mass increases slightly by 10-20 %, and the vector meson mass decreases by some 20-30

    Hopping between Random Locations: Spectrum and Instanton

    Full text link
    Euclidean random matrices appear in a broad class of physical problems involving disorder. The problem of determining their spectra can be mapped, using the replica method, into the study of a scalar field theory with an interaction of the type e^(psi^2). We apply the instanton method to study their spectral tails.Comment: 9 pages, Revtex, 2 postscript figure

    Scale-Invariance and the Strong Coupling Problem

    Full text link
    The effective theory of adiabatic fluctuations around arbitrary Friedmann-Robertson-Walker backgrounds - both expanding and contracting - allows for more than one way to obtain scale-invariant two-point correlations. However, as we show in this paper, it is challenging to produce scale-invariant fluctuations that are weakly coupled over the range of wavelengths accessible to cosmological observations. In particular, requiring the background to be a dynamical attractor, the curvature fluctuations are scale-invariant and weakly coupled for at least 10 e-folds only if the background is close to de Sitter space. In this case, the time-translation invariance of the background guarantees time-independent n-point functions. For non-attractor solutions, any predictions depend on assumptions about the evolution of the background even when the perturbations are outside of the horizon. For the simplest such scenario we identify the regions of the parameter space that avoid both classical and quantum mechanical strong coupling problems. Finally, we present extensions of our results to backgrounds in which higher-derivative terms play a significant role.Comment: 17 pages + appendices, 3 figures; v2: typos fixe

    Langevin dynamics of the Lebowitz-Percus model

    Get PDF
    We revisit the hard-spheres lattice gas model in the spherical approximation proposed by Lebowitz and Percus (J. L. Lebowitz, J. K. Percus, Phys. Rev.{\ 144} (1966) 251). Although no disorder is present in the model, we find that the short-range dynamical restrictions in the model induce glassy behavior. We examine the off-equilibrium Langevin dynamics of this model and study the relaxation of the density as well as the correlation, response and overlap two-time functions. We find that the relaxation proceeds in two steps as well as absence of anomaly in the response function. By studying the violation of the fluctuation-dissipation ratio we conclude that the glassy scenario of this model corresponds to the dynamics of domain growth in phase ordering kinetics.Comment: 21 pages, RevTeX, 14 PS figure

    l W nu production at CLIC: a window to TeV scale non-decoupled neutrinos

    Full text link
    We discuss single heavy neutrino production e+ e- -> N nu -> l W nu, l = e, mu, tau, at a future high energy collider like CLIC, with a centre of mass energy of 3 TeV. This process could allow to detect heavy neutrinos with masses of 1-2 TeV if their coupling to the electron V_eN is in the range 0.004-0.01. We study the dependence of the limits on the heavy neutrino mass and emphasise the crucial role of lepton flavour in the discovery of a positive signal at CLIC energy. We present strategies to determine heavy neutrino properties once they are discovered, namely their Dirac or Majorana character and the size and chirality of their charged current couplings. Conversely, if no signal is found, the bound V_eN < 0.002-0.006 would be set for masses of 1-2 TeV, improving the present limit up to a factor of 30. We also extend previous work examining in detail the flavour and mass dependence of the corresponding limits at ILC, as well as the determination of heavy neutrino properties if they are discovered at this collider.Comment: LaTeX 32 pages. Added comments and references. Matches version to appear in JHE

    A Field Range Bound for General Single-Field Inflation

    Full text link
    We explore the consequences of a detection of primordial tensor fluctuations for general single-field models of inflation. Using the effective theory of inflation, we propose a generalization of the Lyth bound. Our bound applies to all single-field models with two-derivative kinetic terms for the scalar fluctuations and is always stronger than the corresponding bound for slow-roll models. This shows that non-trivial dynamics can't evade the Lyth bound. We also present a weaker, but completely universal bound that holds whenever the Null Energy Condition (NEC) is satisfied at horizon crossing.Comment: 16 page
    corecore